


final



**ADIKAVI SRI MAHARSHI VALMIKI UNIVERSITY, RAICHUR**

## **SYLLABUS**

### **B.Sc. Three Year Degree Program for the Subject ARTIFICIAL INTELLIGENCE**

**With Effect from 2024-25**

**DISCIPLINE SPECIFIC CORE COURSE (DSC) FOR SEM I-IV, SKILL  
ENHANCEMENT COURSE (SEC) FOR SEM IV/V/VI and ELECTIVE  
COURSES FOR SEM V AND VI**

**AS PER N E P (Revised): 2024**

**SEMESTER: IV**

|                         |                                                          |
|-------------------------|----------------------------------------------------------|
| Course Code: CC 5       | Course Title: Artificial Intelligence & Machine Learning |
| Course Credits: 04      | Contact Hours per Week: 04                               |
| Total Contact Hours: 64 | IA Marks: 20                                             |
| Exam Marks: 80          | Examination Duration: 03 Hours                           |

**Course Learning Objectives:**

1. Understand the basic concepts, history, and applications of Artificial Intelligence and Machine Learning.
2. Learn about various AI problem-solving techniques, including search strategies and knowledge representation.
3. Grasp the fundamentals of Machine Learning, including types (supervised, unsupervised, reinforcement).
4. Apply key algorithms for classification, regression, clustering, and dimensionality reduction.
5. Gain hands-on experience in implementing AI & ML models using Python libraries like Scikit-learn, TensorFlow, or PyTorch.
6. Evaluate and tune models using validation techniques and performance metrics.
7. Understand ethical implications and challenges in deploying AI/ML systems in real-world scenarios.

**Course Outcomes: On successful completion of the course, the students shall be able to**

1. Define the principles and scope of AI and ML, including their real-world applications.
2. Demonstrate the ability to represent knowledge and solve problems using logic and search algorithms.
3. Distinguish between different types of learning paradigms and apply suitable ML models.
4. Design and implement supervised learning models (e.g., linear regression, decision trees, SVM).
5. Apply unsupervised learning methods such as k-means clustering and PCA to analyze data patterns.
6. Evaluate AI/ML models using accuracy, precision, recall, F1-score, and cross-validation techniques.
7. Develop and deploy small-scale AI/ML applications considering data, model selection, and interpretability.
8. Analyze ethical and societal impacts of AI technologies and promote responsible AI development.

**Unit-I****16 Hrs.**

Artificial Intelligence and Intelligent Agents: Artificial Intelligence: - Introduction, what is artificial intelligence, Application of artificial intelligence, History of artificial intelligence, Types of artificial intelligence, Artificial intelligence technique. Intelligent Agent: - Agents and Environment, Structure of Agents, Types of Agents, Multi Agent System, Agent communication, Agent development tools.

**Unit-II****16 Hrs.**

Introduction to Machine Learning: Definition, History and Application of Machine Learning,

Types of Machine Learning: Supervised, Unsupervised, Semi-Supervised, and Reinforcement Learning. Labeled and Unlabelled Dataset. Supervised Learning Tasks: Regression vs. Classification, Learning Framework: Training, Validation and Testing of ML models. Performance Evaluation Parameters: Confusion matrix, Accuracy, Precision, Recall, F1 Score, and AUC.

**Unit-III** **16 Hrs.**

#### Supervised Learning and Unsupervised Learning

Regression: Linear and non-linear Regression, Logistic Regression. Classification: Naïve Bayes, K-Nearest Neighbors, Decision Trees.

Linear model: Introduction to Artificial Neural Networks, Perceptron Learning Algorithm, Single Layer Perceptron, Introduction to Support Vector Machine for linearly separable data. Clustering: K-Means, Hierarchical Clustering, DBSCAN, Clustering Validation Measures. ML Applications: Ethical Considerations in Machine Learning.

**Unit-IV** **16 Hrs.**

**Introduction to Deep Learning (DL):** Convolution Neural Network(CNN), Recurrent Neural Network(RNN), Deep Neural Networks(DNN), encoders, Introduction to Transfer Learning, Long Short Term Memory (LSTM).

Text books:

1. M.C. Trivedi, A Classical Approach to Artificial Intelligence, Khanna Book Publishing Company, 2024

References:

1. M.C. Trivedi, Introduction to AI and Machine Learning, Khanna Book Publishing Company, 2024.

## SEMESTER: IV

|                         |                                                |
|-------------------------|------------------------------------------------|
| Course Code: LAB 5      | Artificial Intelligence & Machine Learning Lab |
| Course Credits: 02      | Contact Hours per Week: 04                     |
| Total Contact Hours: 32 | IA Marks: 10                                   |
| Exam Marks: 40          | Examination Duration: 03 Hours                 |

### List of Assignments

1. Write a Python Program to Demonstrate KNN classifier
2. Write a Python Program to Demonstrate SVM Classifier
3. Write a Python Program to Demonstrate Naïve Bayes Classifier
4. Write a Python Program to Demonstrate Neural Networks Classifier
5. Write a Python Program to Demonstrate K-Means Clustering Algorithm
6. Write a Python Program to Demonstrate DBSCAN Algorithm
7. Write a Python Program to Demonstrate Convolution Neural Network(CNN).
8. Write a Python Program to Demonstrate Recurrent Neural Network(RNN).
9. Write a Python Program to Demonstrate Deep Neural Networks(DNN)
10. Write a Python Program to Demonstrate Encoders in DNN
11. Write a Python Program to Demonstrate Long Short Term Memory (LSTM) in DNN

### Examination:

- Student has to answer and execute Two programs

### Evaluation Scheme for Lab Examination:

| Criteria           | Marks     |
|--------------------|-----------|
| Writing Program    | 10        |
| Execution          | 20        |
| Record + Viva-Voce | 10        |
| IA                 | 10        |
| <b>Total</b>       | <b>50</b> |

**ARTIFICIAL INTELLIGENCE**  
**B.Sc., Semester – IV (SEP)**  
**DISSERTATION (PROJECT)**

|                         |                                |
|-------------------------|--------------------------------|
| Course Code: PRJ        | Project                        |
| Course Credits: 02      | Contact Hours per Week: 02     |
| Total Contact Hours: 32 | AI Marks: 10                   |
| Exam Marks: 40          | Examination Duration: 03 Hours |

**Examination:**

- Student has to prepare the project report and present

**Evaluation Scheme for Project**

| <b>Criteria</b>          | <b>Marks</b> |
|--------------------------|--------------|
| Dissertation & Viva-voce | 40 Marks     |
| IA                       | 10           |



NON-GRADUATION FORM

FOR VI SEMESTER  
(TENTH SEMESTER)

DEPARTMENT OF COMPUTER SCIENCE

