

**ADIKAVI SRI MAHARSHI VALMIKI UNIVERSITY, RAICHUR**  
**DEPARTMENT OF POST GRADUATE STUDIES AND RESEARCH IN**  
**INSTRUMENTATION TECHNOLOGY**



**Ph.D. Course Work Syllabus**  
**(With effect from 2025-26 and onwards)**

**Course Duration:** Six months

| Paper No.                | Paper Title                           | Marks    |      |       | End Exam. Time | Lecture Hrs. | Credit Value |
|--------------------------|---------------------------------------|----------|------|-------|----------------|--------------|--------------|
|                          |                                       | End Exam | I.A* | Total |                |              |              |
| <b>Compulsory Papers</b> |                                       |          |      |       |                |              |              |
| HCT1.1                   | Research Publication and Ethics       | 35       | 15   | 50    | 2Hrs           | 2Hrs/Week    | 2            |
| HCT1.2                   | Research Methodology                  | 70       | 30   | 100   | 3Hrs           | 4Hrs/Week    | 4            |
| HCT1.3                   | Recent Trends in Instrumentation      | 70       | 30   | 100   | 3Hrs           | 4Hrs/Week    | 4            |
| <b>Elective Papers</b>   |                                       |          |      |       |                |              |              |
| SCT1.1                   | Scientific/Analytical Instrumentation | 70       | 30   | 100   | 3Hrs           | 4Hrs/Week    | 4            |
| SCT1.2                   | Biomedical Instrumentation            | 70       | 30   | 100   | 3Hrs           | 4Hrs/Week    | 4            |
| SCT1.3                   | Instrumentation in Process Industries | 70       | 30   | 100   | 3Hrs           | 4Hrs/Week    | 4            |
| SCT1.4                   | Agricultural Instrumentation          | 70       | 30   | 100   | 3Hrs           | 4Hrs/Week    | 4            |

**Total Number of Credits = 14**

## **HCT1.1 : RESEARCH PUBLICATION AND ETHICS**

*Contact hours per week: 2*

*Total Hours: 30*

**Unit-I: PHILOSOPHY AND ETHICS (3 hrs):** Introduction to philosophy: definition, nature and scope, concept, branches. Ethics: definition, moral philosophy, nature of moral judgements and reactions

**SCIENTIFIC CONDUCT (5 hrs):** Ethics with respect to science and research; Intellectual honesty and research : Integrity; Scientific misconducts: Falsification, Fabrication, and Plagiarism (FFP): Redundant publications: duplicate and overlapping publications, salami slicing; Selective reporting and misrepresentation of data

### **Unit-II: PUBLICATION ETHICS (7 hrs)**

Publication ethics: definition, introduction and importance; Best practices / standards setting initiatives and guidelines: COPE, WAME, etc.; Conflicts of interest; Publication misconduct: definition, concept, problems that lead to unethical behavior and vice versa, types; Violation of publication ethics, authorship and contributorship; Identification of publication misconduct, complaints and appeals; Predatory publishers and journals.

**Unit-III: OPEN ACCESS PUBLISHING (4 hrs):** Open access publications and initiatives; SHERPA/RoMEO online resource to check publisher copyright & self-archiving policies; Software tool to identify predatory publications developed by SPPU; Journal finder / journal suggestion tools viz. JANE, Elsevier Journal Finder, Springer Journal Suggester, etc.

### **PUBLICATION MISCONDUCT (4 hrs):**

- A. Group Discussions (2 hrs.)** - Subject specific ethical issues, FFP, authorship; Conflicts of interest; Complaints and appeals: examples and fraud from India and abroad.
- B. Software tools (2 hrs.)** - Use of plagiarism software like Turnitin, Urkund and other open source Software tools

### **Unit-IV: DATABASES AND RESEARCH METRICS (7hrs)**

- A. Databases (4 hrs):** Indexing databases; Citation databases: Web of Science, Scopus, etc
- B. Research Metrics (3 hrs):** Impact Factor of journal as per Journal Citation Report, SNIP, SJR, IPP, Cite Score; Metrics: h-index, g index, i10 index, altmetrics

**Reference Books:**

- 1) C. R. Kothari, Research Methodology: Methods and Techniques, New Age International Publishers, New Delhi, 2004
- 2) Deepak Chawla and Neena Sodhi, Research Methodology, Concepts and cases, 2<sup>nd</sup> ed., Vikas Publishing House Pvt Ltd., New Delhi, 2015
- 3) Vinayak Bairagi and Mousami V Munot, Research Methodology: A practical and Scientific Approach, CRC Press, New York, 2019
- 4) Comstock Gary, Research Ethics, Cambridge University Press, 2013
- 5) David Bridges, Philosophy in Educational research, Epistemology, Ethics, politics and quality, Springer International Publishing, AG, 2017
- 6) Peter Pruzan, Research Methodology; The Aims, Practices and Ethics of Science, Springer International Publishing, Switzerland, 2016.
- 7) C. George Thomas, Research Methodology and Scientific writing, II Edition, Springer, 2021.

## **HCT 1.2: RESEARCH METHODOLOGY**

*Contact hours per week: 4*

*Total Hours: 64*

### **UNIT I: Introduction**

**16 Hrs**

Introduction. Objectives & motivation of research. Defining research problems. Types & significance of research. Research methods vs. methodology. Research and scientific method. Research process. Criteria of good research. Importance of research & development (R&D) activity in the field of instrumentation.

### **UNIT II: Report Writing**

**16 Hrs**

Methodology involved in selecting the research topic. Literature review using library & web resources. Collection of literature from primary, secondary, and tertiary sources. Important research journals in the area of instrumentation and their emphasis. Technical report writing. Research paper writing & publishing.

### **UNIT III: Statistical Methods and Data Analysis**

**16 Hrs**

Basic statistical concepts: types of measured quantities. Central tendency of data. Best estimate of true value of data. Measures of dispersion. Standard deviation of the mean. Graphical representation and curve fitting of data: Equations of approximating curves. Determination of parameters in linear relationship. Least square equations of second degree and higher.

### **UNIT IV: MATLAB**

**16 Hrs**

Introduction to MATLAB, Structure of MATLAB, File types, MATLAB windows, MATLAB Programming: M-file program, SIMULINK, and GUI programming. Role of MATLAB in Instrumentation.

#### **BOOKS FOR STUDY:**

1. C. R. Kothari – Research Methodology: Methods and Techniques
2. Jonathan, Anderson, Bairy M. Durkson, Millicent, Pulle – Thesis and Assignment Writings
3. B C Nakra & K K Choudhry – Instrumentation, Measurement and Analysis
4. MATLAB Programming- Y. Kirani Singh & B.B Chaudhury

#### **BOOKS FOR REFERENCE:**

1. R L Dominowaski – Research Methods, PH, NJ, 1980.
2. B A V Sharma, D Rajendra Prasad & P Satyanarayana – Research Methods in Social Sciences
3. Rangan, Mani, Sharma – Instrumentation Devices and Systems
4. Ernest O. Doebelin – Measurement Systems, Application and Design, (MGH)
5. Robert A. Day – How to write and publish a scientific paper, Institute of Scientific Information Press (1979), Philadelphie
6. Amos Gilat – MATLAB: An introduction with Applications
7. Rudra Pratap - Getting Started with MATLAB 7

### **HCT1.3: RECENT TRENDS IN INSTRUMENTATION**

*Contact hours per week: 4*

*Total Hours: 64*

**UNIT I: Intelligent Instrumentation 16 Hrs**

Intelligent vs Dumb instruments. Block diagram of Intelligent Instruments. Design and development of Intelligent Instruments. Advantages, Examples and Applications of Intelligent Instruments.

**UNIT II: System on chip 16 Hrs**

Architectural Overview, ARM7TDMI-S Processor, Memory organization, Pin Connect Block, GPIO, Functional Units: A/D Converter, PWM, Timers, Vector Interrupt Controller, and Serial Ports. Programming and Applications.

**UNIT III: IoT Based Instrumentation 16 Hrs**

Definition of IoT. Introduction to cloud computing, Overview of IoT supported hardware platform such as Raspberry PI, ARM Processor, Arduino board. ESP32, IoT architecture. IoT applications.

**UNIT IV: Advanced Controllers 16 Hrs**

Digital PID Controllers, Cascade and Feed Forward Control Systems, Direct Digital Control Systems, Supervisory Control Systems, Distributed Control Systems (DCS).Fuzzy set theory, Fuzzy logic controllers, PLC block diagram, PLC Hardware, , Programming the PLC.

**BOOKS FOR STUDY:**

1. Artificial Intelligence and Intelligent Systems, N.P Padhy, Oxford University Press, 2005.
2. ARM7 (LPC2129) User Manual
3. Internet of Things: Converging Technologies for Smart Environments and Integrated Ecosystems, Dr. Ovidiu Vermesan, Dr. Peter Friess, River Publishers
4. Industrial Control Electronics – Michael Jacob
5. Modern Control Technology – Christopher T. Killian

**BOOKS FOR REFERENCE:**

1. Artificial Intelligence, Elaine Rich, Kevin Knight, Tata McGraw Hill, 2006
2. The Internet of Things: From RFID to the Next-Generation Pervasive Networked, Lu Yan, Yan Zhang, Laurence T. Yang, Huansheng Ning
3. Internet of Things (A Hands-on-Approach) , Vijay Madisetti , Arshdeep Bahga
4. Computer based Industrial Control – Krishna Kant
5. Programmable Logic Controllers – John Webb

## **SCT1.1: SCIENTIFIC/ANALYTICAL INSTRUMENTATION**

*Contact hours per week: 4*

*Total Hours: 64*

### **UNIT I: Intelligent Analytical Instruments 16 Hrs**

Emission Spectroscopy: Flame Photometers, Flourimeters, Phosphorometers, Scanning Tunnelling Microscope (STM), Atomic Force Microscope (AFM): Principle and working with block and schematic diagrams, salient features of individual blocks, and applications.

### **UNIT II: Radio Chemical Instruments 16 Hrs**

Radiation detectors, Gamma ray spectrometer, X-ray spectrometers, Mossbauer spectrometer: Principle and working with block and schematic diagrams, salient features of individual blocks, and applications.

### **UNIT III: Spectrometers 16 Hrs**

Photoacoustic spectrometers - Resonating, non-resonating types. Photothermal spectrometers. DSC: Principle and working with block and schematic diagrams, salient features of individual blocks, applications.

### **UNIT IV: Environment Monitoring and Analysis 16 Hrs**

Electrochemical analysers, ion selective electrodes, ion analysers, Environment pollution monitoring instruments, Air pollution monitoring instruments: Carbon dioxide, hydrocarbons, sulphur dioxide, nitrogen oxide, oxides. Water pollution monitoring instruments: TDS, dissolved oxygen, turbidity, pH, conductivity, chloride, fluoride.

#### **BOOKS FOR STUDY:**

1. Skoog, Holler, Nieman - Principles of Instrumental Analysis, 5<sup>th</sup> ed.
2. R S Khandpur – Handbook of Analytical Instruments.
3. Chatwal and Anand - Instrumental Methods of Analysis.

#### **BOOKS FOR REFERENCE:**

1. Willard, Merritt, Dean, Settle - Instrumental Methods of Analysis, 7<sup>th</sup> ed

## **SCT1.2: BIOMEDICAL INSTRUMENTATION**

*Contact hours per week: 4*

*Total Hours: 64*

### **UNIT I: Introduction 16 Hrs**

Development of biomedical instrumentation. Physiological system of the body. Transducers for biomedical applications.

### **UNIT II: Patient Care Monitoring 16 Hrs**

Patient care and monitoring. The elements of intensive care monitoring. Instruments for patient monitoring system. Intensive care unit (ICU). Intensive coronary care unit (ICCU). Emergency room. - Computerised Patient monitoring system.

### **UNIT III: Laser Application in Medicine 16 Hrs**

Advantages of laser surgery - Laser based Doppler blood flow meter- Endoscope -Cardio scope -Laparoscope.

### **UNIT IV: Computer applications in Medicine 16 Hrs**

Computer aided ECG analysis- Computerized Catheterisation Laboratory. Computer controlled ultrasonic imaging -Applications. Computer aided tomography, MRI and applications.

#### **BOOKS FOR STUDY:**

1. Leslie Cromwell -Biomedical instrumentation and measurements -Prentice Hall.
2. L.A. Geddes and L.E. Baker -Principles of Applied biomedical instrumentation-John Wiley & Sons

#### **BOOKS FOR REFERENCE:**

1. B. Jacobson and J.G. Webster -Medicine and Clinical Engineering -Prentice Hall of. India
2. Macka Sturat Biomedical telemetering- John Wiley.
3. R.S. Khandpur -Handbook of biomedical engineering -Tata McGraw Hill.

### **SCT1.3: INSTRUMENTATION IN PROCESS INDUSTRIES**

*Contact hours per week: 5*

*Total Hours: 64*

**UNIT I: Instrumentation in Thermal Industries** **16 Hrs**

Description of the process/plant, measurement hardware, valves, controllers and displays, computer applications and typical control systems as applied to the thermal power stations.

**UNIT II: Instrumentation in Cement Industries** **16 Hrs**

Description of the process/plant, measurement hardware, valves, controllers and displays, computer applications and typical control systems as applied to the cement industries.

**UNIT III: Instrumentation in Iron and Steel Industries** **16 Hrs**

Description of the process/plant, measurement hardware, valves, controllers and displays, computer applications and typical control systems as applied to the iron and steel industries.

**UNIT IV: Instrumentation in Petrochemical Industries** **16 Hrs**

Description of the process/plant, control of distillation tower, refrigeration units, system boilers, furnaces, crystallizers, heat exchangers, pumps, compressors and evaporators as applied to the petrochemical industry.

**BOOKS FOR STUDY:**

1. Instrumentation in Process Industries -B. G. Liptak
2. Industrial Instrumentation and Control –S. K. Singh
3. Computer based Industrial Control – Krishna Kant

**BOOKS FOR REFERENCE:**

1. Industrial Control Electronics - J. Michael Jacob
2. Industrial Manuals

## SCT1.4: AGRICULTURAL INSTRUMENTATION

*Contact hours per week: 5*

*Total Hours: 64*

### **UNIT I: Introduction 16 Hrs**

Necessity of instrumentation and control for agriculture, sensor requirement, remote sensing, biosensors in agriculture.

### **UNIT II: Soil Properties & Sensing 16 Hrs**

Properties of soil: fundamental definitions & relationships, index properties of soil, permeability & seepage analysis. Sensors: introduction to sonic anemometers, hygrometers, fine wire thermocouples.

### **UNIT III: Greenhouse Parameters & Instrumentation 16 Hrs**

Greenhouse effect, Concept & construction of green houses, merits & demerits, ventilation, cooling & heating, wind speed, temperature & humidity, soil moisture, light intensity, rain gauge, carbon dioxide enrichment measurement & control.

### **UNIT IV: Computer Application in Agriculture 16 Hrs**

Role of instrumentation in agriculture. Application of smart instruments like Robots & Drones in agriculture, pesticide spray control, image processing and analysis for quality control.

#### **BOOKS FOR STUDY:**

1. Industrial instrumentation, “Patranabis”, TMH.
2. Principle of Farm Machinery, R.A Kepner, Roy Bainer;: CBS Publication
3. Process control and instrumentation technology, “C.D. Johnson”, PHI

#### **BOOKS FOR REFERENCE:**

4. Instrumentation handbook-process control, “B. G. Liptak”, Chilton.
5. Wills B.A., “Mineral Processing Technology”, 4<sup>th</sup> ed., Pergamon Press
6. Agricultural Engineering; RadheyLal: Saroj Publication
7. Environmental Engineering, Peary. II. S. and Others