

Under Graduate Curriculum for Degree of

Bachelor of Computer Applications

BCA III Semester With effect from 2025-26

BOS(Computer Application) UG meeting Approval Dated: 06-09-2025

	BCA Syllabus w.e.f 2025-26 onwards: III semesters								
Sem.	Course Code	Theory/ Practical	Subject Title	Credits	No. of hour per week Theory / Practical	Duration of Exam	Internal Assessme nt Marks Theory / Practical	Semest er end Exam Marks	Total Marks
	Paper-1	Theory	Operating System Concepts	4	4	3 hrs.	20	80	100
		Practical	Linux/UNIX Lab	2	4	3 hrs.	10	40	50
III	Paper-2	Theory	Design and Analysis of Algorithms	4	4	3 hrs.	20	80	100
		Practical	Algorithms Lab. Using C/JAVA	2	4	3 hrs.	10	40	50
	Paper-3	Theory	Computer Oriented Numerical Methods	4	4	3 hrs.	20	80	100

BCA 3rd semester Syllabus w.e.f. 2025-26 onwards

Paper 1	Operating System Con	cepts	Credits: 4	Conta	ct Hours: 60	Theory 04 Hrs/week
Internal as	sessment: 20 marks	Term e	nd exam: 80 m	narks	Exam	duration: 03hrs

Course Outcomes (COs): At the end of the course, students will be able to:

- Explain the structure and functions of the operating system.
- Comprehend multithreaded programming, process management, process synchronization, memory management and storage management.
- Compare the performance of Scheduling Algorithms
- Identify the features of I/O and File handling methods

UNIT 1 12Hrs

Introduction to Operating System: Definition, History and Examples of Operating System; Computer System organization; Types of Operating Systems; Functions of Operating System; Systems Calls; Operating System Structure.

UNIT 2 12Hrs

Process Management: Process Concept- Process Definition, Process State, Process Control Block, Threads; Process scheduling- Multiprogramming, Scheduling Queues, CPU Scheduling, Context Switch; Operations on ProcessesCreation and Termination of Processes; Inter process communication (IPC)- Definition and Need for Inter process Communication; IPC Implementation Methods- Shared Memory and Message Passing;

UNIT 3 12Hrs

Multithreaded Programming: Introduction to Threads; Types of Threads; Multithreading- Definition, Advantages; Multithreading Models; Thread Libraries; Threading Issues. CPU Scheduling: Basic concepts; Scheduling Criteria; Scheduling Algorithms; Multiple-processor scheduling; Thread scheduling; Multiprocessor Scheduling; Real-Time CPU Scheduling.

UNIT 4 12Hrs

Process Synchronization: Introduction; Race Condition; Critical Section Problem and Peterson's Solution; Synchronization Hardware, Semaphores; Classic Problems of Synchronization- Readers and Writers Problem, Dining Philosophers Problem; Monitors. Deadlocks: System Model; Deadlocks Characterization; Methods for Handling Deadlocks; Deadlock Prevention; Deadlock Avoidance; Deadlock Detection; and Recovery from Deadlock.

UNIT 5 12Hrs

Memory Management: Logical and Physical Address Space; Swapping; Contiguous Allocation; Paging; Segmentation; Segmentation with Paging. Virtual Memory: Introduction to Virtual Memory; Demand Paging; Page Replacement; Page Replacement Algorithms; Allocation of frames, Thrashing

Text Book

1. Operating System Concepts, Abraham Silberschatz, Peter Baer Galvin, Greg Gagne., 9th Edition, Wiley, 2012.

References:

- 2. Operating System Concepts Engineering Handbook, Ghosh PK, 2019.
- 3. Understanding Operating Systems, McHoes A et al., 7 th Edition, Cengage Learning, 2014.
- 4. Operating Systems Internals and Design Principles, William Stallings, 9th Edition, Pearson Education.
- 5. Operating Systems A Concept Based Approach, Dhamdhere, 3rd Edition, McGraw Hill Education India.
- 6. Modern Operating Systems, Andrew S Tanenbaum, 4thEdition, Pearson Education.

Paper-1Lab	LAB: Operating System	m Lab	Credits: 2	Conta	ect Hours: 60	Practical	04 Hrs/week
Internal ass	sessment: 10 marks	Term end	l exam: 40 m	narks	Exam	duration:	02 hrs

Assignments based on the subject Paper-1: Operating System Concepts shall be implemented in the lab.

- 1. Basic UNIX Commands and various UNIX editors such as vi, ed, ex and EMACS
- 2. UNIX and Windows File manipulation commands
- 3. C Program For System Calls Of Unix Operating Systems (Opendir, Readdir, fork, getpid, exit)
- 4. C programs to simulate UNIX commands like cp, ls, grep.
- 5. Simple shell programs by using conditional, branching and looping statements (to check the given number is even or odd,the e given year is leap year or not, find the factorial of a number, swap the two integers)
- 6. To write a C program for implementation of Priority scheduling algorithms
- 7. To write a C program for implementation of Round Robin scheduling algorithms.
- 8. To write a C program for implementation of SJF scheduling algorithms
- 9. To write a C-program to implement the producer consumer problem using semaphores
- 10. To write a C program to implement banker's algorithm for deadlock avoidance.
- 11. To write a c program to implement Threading and Synchronization Applications.
- 12. To write a C program for implementation of memory allocation FCFS and SJF scheduling algorithms.
- 13. To write a c program to implement Paging technique for memory management.
- 14. To write a c program to implement semaphores.
- 15. To write a c program to implement Bankers algorithm.

EvaluationSchemeforLab. Term end Examination

AssessmentCriteri	a	Marks				
Program- 1	Writingthe Program	05				
	ExecutionandFormatting	05				
Program- 2	Writingthe Program	05				
	ExecutionandFormatting	05				
VivaVoice	VivaVoice					
PracticalRecord be	ook	05				
	Total	40				

Paper 2	Design and Analysis of Algorithms		Credits: 4	Conta	ct Hours: 60	Theory 04 Hrs/week
Internal a	ssessment: 20 marks	Term e	nd exam: 80 ı	marks	Exam	duration: 03hrs

Course Outcomes (COs): At the end of the course, students will be able to:

- the time complexity of an algorithm and asymptotic notation is used to provide classification of algorithms
- understand different computational models and their complexity(e.g., divide-and-conquer, greedy algorithms, dynamic programming, etc)
- analyze and design algorithms and the impact of algorithm design in practice
- write program to execute and analyze different algorithms
- understand the concepts of deterministic and non-deterministic algorithms.

UNIT 1 12Hr

Design of Efficient Algorithms and Elementary Data Structures: Algorithm specification, Performance analysis, Time and Space Complexity, Asymptotic notation, Review of Stack, Queues, Trees. Operations on Stack, Queue and Trees. Recursion, Heaps and Heap Sort

UNIT 2 12Hrs

Divide and Conquer: General Method, Binary Search, Max and Min, Merge Sort, Quick Sort, Matrix Multiplication and Related Operations; Strassen's Matrix Multiplication, Boolean Matrix Multiplication.

UNIT 3 12Hrs

The Greedy Method: The General Method, Knapsack Problem, JobSequencing with Deadlines, Minimum Cost Spanning Trees: Prim's Algorithm, Kruskal's Algorithm. Single Source Shortest Paths

UNIT 4 12Hrs

Dynamic Programming: The General Method, Multistage Graphs, All Pair's Shortest Paths,0/1 knapsack, Travelling Salesman Problem

UNIT 5 12Hrs

Backtracking: General Methods, 8 – Queens Problem, Sum of Subsets, Knapsack Problem, NP – Hard and NP – Complete Problems.

Text Book:

1. Ellis, Horwitz, SartajSahani and Rajashekaran S., "Computer Algorithms", (1999) GalgotiaPublications Pvt.,Ltd.

Reference Books:

- 1. Aho A.V, Hopcroft J.E and Ullman, J.D., "The Design and Analysis of Computer Algorithms", (1976) Addison Wesley.
- 2. Introduction to Algorithms, (2009) third edition, by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, MIT press.
- 3. Sara Baase, Computer Algorithms, "An Introduction to Design and Analysis", Addison Wesley.

- 4. Allen Weiss (2009), Data structures and Algorithm Analysis in C++, 2nd edition, Pearson education, New Delhi.
- 5. R. C. T. Lee, S. S. Tseng, R.C. Chang and T. Tsai (2006), Introduction to Design and Analysis of Algorithms A strategic approach, McGraw Hill, India.

Paper-2 Lab	LAB: Algorithms La C/JAVA	b. Using	Credits: 2	Conta	ect Hours: 60	Practical 04 Hrs/week
Internal asse	ssment: 10 marks	Term end	exam: 40 ma	ırks	Exam	duration: 02 hrs

Assignments based on the subject Paper-2: **Introduction to Algorithms Design** shall be implemented in the lab.

- 1. Program to construct a stack of elements and to perform the following operations on: push, pop, status, empty, full, display
- 2. Program to construct a queue of integers and to perform following operations on it: enqueuer, de-queue, status, empty, full
- 3. Program to implement
 - a. Binary Search,
 - b. Max and Min,
 - c. Merge Sort,
 - d. Quick Sort,
 - e. Strassen's Matrix Multiplication,
 - f. Boolean Matrix Multiplication
- 4. Program to implement
 - a. Job Sequencing with Deadlines,
 - b. Prim's Algorithm,
 - c. Kruskal's Algorithm
- 5. Program to implement All Pair's Shortest Paths
- 6. Dijkstras Algorithm
- 7. Program to implement all pair shortest problem using dynamic programming technique
- 8. Program to solveTravelling Salesman Problem

EvaluationSchemeforLab. Term end Examination

AssessmentCriteria	ı	Marks
Program- 1	Writingthe Program	05
	ExecutionandFormatting	05
Program-2	Writingthe Program	05
	ExecutionandFormatting	05
VivaVoice		05
PracticalRecord bo	ok	05
	Total	40

Pa	Paper 3 Computer Oriented Numerical		Credits: 4	Conta	ct Hours: 60	Theory 04 Hrs/week	
		Methods					
	Internal assessment: 20 marks		Term en	d exam: 80 1	marks	Exam	duration: 03hrs

Course Outcomes (COs): At the end of the course, students will be able to:

- Understand the concepts of rounding and truncation errors, their propagation
- Apply numerical techniques to find roots of algebraic, transcendental, and systems of linear equations.
- Fit polynomials to data points using interpolation techniques .
- Compute derivatives and integrals of functions numerically
- Apply numerical methods to find approximate solutions for ordinary differential equations
- Develop the ability to choose, develop, and apply suitable numerical methods to solve practical problems, and use programming languages to implement algorithms and interpret results.

UNIT 1 12Hrs

Errors in Numerical Calculation – Introduction, Numbers and their Accuracy, Mathematical Preliminaries, errors and their computation ,absolute, relative and percentage errors, General error formula, Error in the series Approximation.

Solving Non linear Equations - computer & arithmetic errors, method of bisection, the secant method, Newton–Raphson's method, Newton's method for polynomial, Horner's method, Muller's method, order of convergence of other method.

UNIT 2 12Hrs

Interpolation- Introduction, errors in polynomial Interpolation, Finite Difference, Forward, Backward, Central Difference, Newton's Formulae for Interpolation, Lagrange's Interpolation Formula.

Linear System of Equation- Matrix notation, determinants and matrix inversion, norms, eigen values and eigen vectors of a matrix, the elimination method, Gauss elimination and Gauss-Jordan Method, Iterative method Jacobi Iterative Method and Gauss Seidal Iteration Method.

UNIT 3 12Hrs

Curve Fillting, B- Splines and Approximation - Least –Square Curve Fitting procedures, fitting a straight line, nonlinear curve fitting, Method of Least Squares for continuous Functions, Orthogonal Polynomial , Gram-Schmidt Orthogonalization Process, B-Splines, Least Square solution, Representation of B- Spines, The Cox-de Boor Recurrence Formula, Computation of B-Splines, Approximation of functions, Chebyshev polynomials, Economization of Power Series.

UNIT 4 12Hrs

Numerical Differentiation – Errors in Numerical Differentiation, The cubic spline method, Maximum and Minimum values of a Tabulated function.

Integration - Numerical Integration, Trapezoidal Rule, Simpson's 1/3 Rule, Simpson's 3/8 Rule, Boole's and Weddle's Rulres, Romberg Integration, Newton-Cotes Integration Formulae, Euler – Maclaurin Formula.

UNIT 5 12Hrs

Numerical Solution of Ordinary Differential Equations- Solution by Taylor's Series, Picard's Method of successive approximation, Euler's Method, Error Estimate for the Euler Method, Modified Euler's Method, Rung – Ktta Method, Preditor- Corrector Methods, Adams-Moulton Method, Milne's Method, Boundary Value Problems.

TEXT BOOKS:

- 1. S. S. Satry Introductory Methods of Numerical Analysis, 3rd edition Prentice-Hall India.
- 2. M. K. Jain, S. R. K. Iyengar, R. K. Jain- Numerical Methods for Scientific and Engineering Computation, 3rd Edition New Age International (P) Limited.

REFERENCES:

- 1. F. Gerald, Patrick O. Wheatley, Applied Numerical Analysis, 6/e, Pearson Education.
- 2. Madhumangal Pal, Numerical Analysis for Scientists and Engineers, Narosa Publications.
- 3. Conte S.D. and Carl DeBoor, Elementary Numerical Analysis, McGraw Hill.
- 4. Shankar Rao K., Numerical Methods for Scientists and Engineers, PHI.

Evaluation Scheme for Lab. Term end Examination

L valuation 50	IIIIIauon	
Assessment Criteria	Marks	
Program- 1	Writing the Program	05
	Execution and Formatting	05
Program- 2	Writing the Program	05
	Execution and Formatting	05
VivaVoice	05	
Practical Record bo	05	
	40	