

ADIKAVI SRI MAHARSHI VALMIKI UNI VERSITY, RAICHUR

Under Graduate Curriculum for Degree of Bachelor of Science (B.Sc.) in Botany

(III & IV Semester)

As per Revised NEP
With Effect from the Academic year from 2025-26 and onwards

B.Sc. Semester-III

Discipline Specific Course (DSC)

SEMESTER III CORE COURSE: BOTANY PAPER -

Course Title: - PLANT ANATOMY AND EMBIOLOGY

Course Code: BSBOT 03

(Credits: Theory-4, Practicals-2) THEORY

Theory/		Instruction	Total No. of	Duration	Formative	Summative	Total
ractical	Credits	hour per week	Lectures/Hours	of Exam	Assessment	assessment	Marks
		2 18 0 0 0	/Semester	[adnes	Marks	Marks	
Theory	04	04	64hrs.	3hrs.	20	80	100
1	ractical	ractical Credits	ractical Credits hour per week	ractical Credits hour per week Lectures/Hours /Semester	ractical Credits hour per week Lectures/Hours of Exam /Semester	ractical Credits hour per week Lectures/Hours of Exam Assessment /Semester Marks	ractical Credits hour per week Lectures/Hours of Exam Assessment assessment /Semester Marks Marks

Course No	Title of the Course	No. Of Credit	Teaching Hours/Per Week	Formative Assessment	Summative Assessment	Total Marks
DSC-BOT- 3.1 T	PLANT ANATOMY AND	04	04	20	80	100

Programme Name	B.Sc. in Botany	Semester	III
Course Title	PLANT ANATOMY AN	D DEVELOPMENTAL BIOLOGY	
Course Code	DSC-BOT-3.1 T	No. Of Credits	4
Contact Hours	4 hrs/Week	Duration of SEA/Exam	3 Hrs
Formative Assessment	20	Summative Assessment Marks	80

Course Outcomes (COs): At the end of the course students will able to:

- CO1: Observation of variations that exist in internal structure of various parts of a plant and as well as among different plant groups in support for the evolutionary concept.
- CO2: Skill development for the proper description of internal structure using botanical terms, their identification and further classification.
- CO3: Induction of the enthusiasm on internal structure of locally available plants.
- CO4: Understanding various levels of organization in a plant body with an outlook in the relationship between the structure and function through comparative studies.
- CO5: Understanding the various reproductive methods sub-stages in the life cycle of plants.
- CO6: Observation and classification of the embryological variations in angiosperms.
- CO7: Enthusiasm to understand evolution based on the variations in reproduction among plants.

Unit	Titles	60hrs/sem
	Angiosperm Anatomy, Plant Cell Structure and Tissues:	16hrs
Unit I	Introduction, objectives and scope of Plant Anatomy, Plant cell structure—nature of plant cell wall. Contribution of Indian anatomist *Tissue and tissue systems* — apical meristematic tissue. Theories on organization of meristem (apical cell theory, Tunica-Corpus theory, histogen theory and Korper-Kappe theory), quiescent centre. Permanent tissue (Parenchyma, Collenchyma, Sclerenchyma, and Complex tissues). *Tissue system*: Epidermal tissue, Ground tissue, Vascular tissue, Secretary tissue and Mechanical tissue system. Stomatal types.	
Unit II	Primary Structures, Normal and Anomalous Secondary Growth Types of vascular bundles and Vascular cambium, Origin, development. Primary Structures -Structure of Dicot root, and stem: (Tridax/Sunflower), - Monocot root, and Stem (Maize). Structure of Dicot and Monocot leaf (Tridax/Sunflower, Maize).	16hrs

Box

BOOT

1- Color

	Normal secondary growth in dicot stem and root.	
	Anomalous secondary growth: Aristolochia, Boerhaavia (dicot stem) Dracaena	() 227 ()
	(monocot stem)	1000
	Applications in systematics, forensics and Pharmacognosy.	
	Embriology	16hr
	Differentiation and cell polarity in acellular (<i>Dictyostelium</i>), Unicellular (<i>Equisetum</i>)	
Unit III	spore) and multi cellular system (root hair formation). Shoot Apical meristem:	
Omt m	Origin, structure and function. Ultrastructure of meristem tissue.	
	Organogenesis: Differentiation of root, stem, leaf and axillary buds, bud dormancy.	1000
	Mechanism of leaf primordium initiation, development and Phyllotaxis.	800
	Transition from vegetative apex in to reproductive apex.	8(2)
	Developmental patterns at flowering apex: ABC model specification of floral organs.	
	Modification of gene action by growth hormones and cellular differences between	
	floral organs.	
	Senescence – a general account.	
	Augusensinh Aussonia, Than Cell Structure and Thatestaless	
	Reproductive Biology	16hrs
Unit IV	Introduction, Scope and contributions of Indian embryologists: P. Maheshwari, BGL	
Omtiv	Swamy and M.S. Swaminathan.	
	Microsporangium: Development and structure of mature anther, Anther wall layers,	
	Tapetum -types, structure and functions.	
	Microsporogenesis – Male Gametophyte: Microspore mother cells, microspore	
	tetrads, Pollinia / pollinarium.	
	Microgametogenesis—Formation of vegetative and generative cells, structure of male	
	gametophyte. Pollen embryosac (Nemec phenomenon).	
	Megasporangium – Structure of typical Angiosperm ovule. Types of ovules-	
	Anatropous, Orthotropous, Amphitropous and Circinotropous.	
	Megasporogenesis	
	Female Gametophyte – Embryosac- monosporic- <i>Polygonum</i> type, bisporic–	
	Allium type, tetrasporic - Fritillaria type. Structure of mature embryosac.	
	Pollination and fertilization: Structural and functional aspects of pollen, stigma	
	and style.	
	Post pollination events; Current aspects of fertilization and Significance of double	
	fertilization, Post fertilization changes.	
	Endosperm – Types and its biological importance. Free nuclear (<i>Cocos nucifera</i>),	
	cellular (<i>Cucumis</i>), helobial types. (Ruminate endosperm example Alisma.)	
	Embryogenesis—Structure and composition of zygote, Dicot (Capsellabursa-	
	Pastoris) and Monocot (Najas) embryo development.	
	A general account of seed development.	

Recommended books:

1. Bhojwani and Bhatnagar- 'Introduction to Embryology of Angiosperms' - Oxford & IBH, Delhi

2. Bhojwani SantSaran, 2014. Current Trends in the Embryology of Angiosperms, Woong-Young Soh, Springer Netherlands,

Re

1 July July 1

- 3. Coutler E.G.1969. Plant Anatomy-Part I Cells and Tissues-Edward Arnold, London.
- 4. Dickison, W.C. 2000. Integrative Plant Anatomy, Harcourt Academic Press, USA
- 5. Eames A.J. Morphology of Angiosperms McGraw Hill, NewYork.
- 6. Esau, K. 1990. Plant Anatomy, Wiley Eastern Pvt Ltd New Delhi
- 7. Evert, R.F. (2006) Esau's Plant Anatomy: Meristem, Cells, and Tissues of the Plant Body: Their Structure, Function and Development. John Wiley and Sons, Inc.
- 8. Fahn, A.1992. Plant Anatomy, Pergamon Press, USA
- 9. Johri, B.M.I., 1984. Embryology of Angiosperms, Springer- Verlag, Netherlands.
- 10. Karp G., 1985. Cell Biology; Mc. Graw Hill Company
- Maheshwari, P 1950. An introduction to the embryology of angiosperms. NewYork: McGraw-Hill
- 12. Mauseth, J.D. 1988. PlantAnatomy, the Benjammin / Cummings Publisher, USA.
- 13. Nair P.K. Pollen Morphology of Angiosperms Scholar Publishing House, Lucknow
- 14. Pandey S.N.1997, Plant Anatomy and Embryology. A. Chadha, Vikas Publication House Pvt Ltd;
- 15. Pandey, B.P., 1997. Plant Anatomy, S. Chand and Co.New Delhi
- 16. Raghavan, V., 2000. Developmental Biology of Flowering plants, Springer, Netherlands.
- 17. Saxena M.R.- Palynology -Atreatise- Oxford & I.B.H., New Delhi.
- 18. Shivanna, K.R., 2003. Pollen Biology and Biotechnology. Oxford and IBH Publishing Co. Pvt. Ltd. Delhi.
- 19. Vashishta. P.C., 1984. Plant Anatomy-Pradeep Publications -Jalandhar
- 20. Vashishta, P.C. 1997. Plant Anatomy, Pradeep Publications.

FormativeAssessment forTheory				
AssessmentOccasion/type	Marks			
Internal Assessment Test 1	05			
Internal Assessment Test 2	05			
Assignment	10			
Total	20Marks			
Formative Assessment as per g	uidelines.			

Boot

Dr.

y January

B.Sc.Semester-III

Discipline Specific Course (DSC)

Course Title: PLANT ANATOMY AND EMBRICALOGY Course Code: BSBOT 03

DSC-3	Practical	02	04	64 hrs.	3hrs.	10	40	50
	abasim		aV -mgaires,	/Semester	E typko zro	Marks	Marks	
Course	Practical	Credits	hour per week	Lectures/Hours	Exam	Assessment	assessment	Marks
Type of	Theory/		Instruction	Total No. of	Durationof	Formative	Summative	Total

Course No	Title of the Course	No. Of Credit	Teaching Hours/Per Week	Formative Assessment	Summative Assessment	Total Marks
DSC- BOT-3.2 P	PLANT ANATOMY AND DEVELOPMENTAL BIOLOGY EMBRYOLDGY	02	04	10	40	50

Practical

List of the Experiments, each will have 4rs/Week (Minimum12 experiments)

- 1: Study of meristem (Permanent slides/ Photographs).
- 2. Study of Simple Tissues (Parenchyma, Collenchyma and Sclerenchyma) and Complex

Tissues (Xylem and Phloem).

- 3: Maceration technique to study elements of xylem fibres, Study of primary structure of dicot root, stem and leaf (Sunflower) and monocot root, stem and leaf (Maize).
- 4: Study of Normal secondary growth structure in dicot stem and root (Sunflower) and Anomalous secondary growth: *Aristolochia, Boerhaavia* (dicot stem) *Dracaena* (monocot stem).
- 5: Study of trichomes (any three types) and stomata (any three types) with the help of locally available plant materials.
- 6: Permanent slides of Microsporogenesis and male gametophyte.
- 7. Mounting of Pollen grains of Grass and Hibiscus and Pollinia of *Calotropis*.
- 8: Preparation of Brewbaker and Kwack Media
- 9. Pollen germination (hanging drop method) and Effect of Boron and Calcium on pollen germination.
- 10: Permanent slides/photographs of types of ovules, Megasporogenesis & embryosac development.
- 11. Placentation: Axile, Marginal and Parietal types.
- 12: Mounting-of -embryo: Tridax and Chilli, Mounting of endosperm: Cucumis/Crotalaria

A poor

Ph. 5

Jour Jus

Formative Assessment for Theory				
Assessment Occasion/Type	Marks			
Session Test	10			
Seminar/Group Discussion	5			
Assignment/Field work/Minor project	5			
Total	20			

Formative Assessment for Practical				
Assessment Occasion/Type	Marks			
Session Test	6	6		
Practical Record	2			
Assignment/Tour Report/Field Studies	2			
Total	10	-		

the patr

ON.

ROS

Soul

SEMESTER III

CORECOURSE: BOTANY PAPER-

DSC-BOT-3.1: PLANT ANATOMY AND EMPLOY DE CANAL THEORY

Time:	3 Hours	Max.Marks:80
Q.I.	Answer all of the following questions	10x2=20Marks
	2	
	3	
	4	
	5	
	6	
	7	
	8	
	9	
	10	
Q.II.	Write critical note on any SIX of the follow	ving 6x05=30Marks
	11 sylbute olasse	
	12	
	13	
	14	
	15	
	16 17	
	17	
Q. III.	Answer any THREE of the following	3x10=30Marks
4	19	
	a.	
	b.	
	20	
	a.	
	b.	
	21	
	a.	
	b.	
	22	
	a	
	b	

th pat

de

ON!

A SO

- Deus

Scheme of Practical Examination (Distribution of Marks): 40 Marks for semester end Examination

SEMESTER III

CORE COURSE: BOTANY PRACTICAL-

DSC-BOT-3.2 P: PLANT ANATOMY AND COMPAND COMPAND

Time: 03Hours Max. Marks: 40 Q No. 1. Identify and describe the anatomical features of given material A 05Marks Q No. 2. Conduct the pollen germination test for given material B and calculate the percentage of pollen germination 05Marks Q NO. 3. Mount or expose from the given material C 05Marks Q NO. 4. Mount embryo /endosperm from given specimen D 05Marks Q NO. 5. Identify with reasons with given slide/specimen/photograph E, F, G and H 10 Marks Viva voce 05 Marks Practical Record/ submission 05 Marks

Note: The same scheme may be used for IA (Formative assessment) Examination.

General instruction to examiners:

- 1. Give specimen for anomalous secondary growth-A
- 2. Give flower buds for pollen germination –B
- 3. Give specimen for tylosis, epidermal out growths, simple tissues, complex tissues-C
- 4. Give specimen for embryo /endosperm mounting-D
- 5. Spotting 2 slides /specimen from anatomy and 2 slides /specimen developmental biology- E, F, G and H.
- 6. Viva voce based on theory
- 7. Practical Record.

SEMESTER SCHEME OF EVALUATION

			DIVID OF DAVIDORI	ION
Q1	A- Identification Slide Preparation Labelled diagram Reasons			1Mark 2Marks 2Marks 3Marks
Q2	-B Mounting Labeled diagram			2 Marks 2Marks
Q3	-C Mounting Labelled diagram			4 Marks 1 Marks
Q4	D- Identification Slide preparation Sketch and Label			l Mark 2Marks 2Marks
Q5	E,F,G – Identification Reasons	1	(D) 10	1Mark 1.5 Mark