

ADIKAVI SRI MAHARSHI VALMIKI UNIVERSITY, RAICHUR

SYLLABUS B.Sc Three Year Degree Program for the Subject Electronics

With Effect from 2024-25

DISCIPLINE SPECIFIC CORE COURSE (DSC) FOR SEM I-IV, SKILL ENHANCEMENT COURSE (SEC) FOR SEM IV/V/VI and ELECTIVE COURSES FOR SEM V AND VI

AS PER N E P (Revised): 2024

B.Sc. ELECTRONICS III SEMESTER

Programme Name	B.Sc. in Electronics	
Semester	Third Semester	
Course Title	OP-AMPS AND LINEAR INTERGARTED CIRCUITS	
Course Code	ELE CT-3	No. of Credits: 04
Teaching Hours	64	Duration of Exam: 3 hours
Formative Assessment Marks	20	Summative Assessment Marks: 80

Course Objectives:

The students are able to understand and gain the knowledge on

- Basics of Op-Amps, configurations and applications of Op-Amps
- Principles of Oscillators, design and working of wave form generators.
- IC-555 timer working and its applications.
- The design and working of wave shaping circuits.

Course Outcome:

After studying the syllabus, the students are able to understand principles, design and construct the various circuits using Op. Amps and their applications.

ELE CT-3: OP-AMPS AND LINEAR INTERGARTED CIRCUITS

UNIT -I: Operational Amplifiers:

16Hrs

Differential Amplifier: Emitter coupled differential amplifier-circuit and working. Block diagram, parameters of op-amp: input bias current, input offset voltage, output offset voltage, CMRR, slew rate, SVRR and thermal drift. Characteristics ideal and practical op-amps, open loop gain in inverting and non-inverting and differential modes - Limitations.

Op-Amp with Negative Feedback: Inverting amplifier-derivation for A_{ν} , concept of virtual ground and virtual short. Non-inverting amplifier- derivation for A_{ν} , voltage follower circuits and features. Difference Amplifier: Derivation of its output.

UNIT II: Application of Operational Amplifiers:

16 Hrs

Op-amp as adder and subtractor, derivation for the output voltage. Averaging amplifier, scale changer, op-amp integrator and differentiator and derivation for the output voltage, output wave forms for square wave input.

Instrumentation Amplifier: Construction and working using op-amps & principal of oscillations, phase shift and Wein- bridge oscillators.

UNIT III: IC 555 timer and Waveform Generators:

16 Hrs

IC 555 timer: functional block diagram and its working.

Multivibrators: Astable, Monostable and Bistable Multivibrators using 555 timer, working, equation for frequency of oscillations (no derivation), Schmitt trigger using IC 555, wave forms, mention of UTP and LTP.

Waveform Generators: Square wave generator and triangular wave generator using Op. Amps, circuit diagram, working and wave forms, Ramp generator circuit diagram and working.

UNIT IV: Wave Shaping

16 Hrs

Wave shaping circuits: Clippers-Positive, negative, positive biased, negative biased and combinational clippers. Clampers- positive and negative clampers-circuit diagram working and waveforms of all circuits.

Active filters: Low-pass, High-pass, Band-pass and Band-reject filters using Op-Amps.

Text Books for study:

- 1. A text book of Electronics, R S Sedha, S Chand and co, Multicolour, 3rd edition 2012.
- 2. Operational-amplifier and linear integrated circuits: Ramakanth Gaikwad, PHI 5th Edition.
- 3. Electronics devices and circuit theory, Robert Boylstead and Louis Nashelsky, 9th Edition 2013 PHI.
- 4. Linear integrated circuits by Roy Choudhury, New age international, 4th Edition 2010.

Reference Books:

- 1. Basic Electronicsp-B.L. Theraja-S. Chand and Co., 3rd Edition 2012.
- 2. Electronics text lab manual, Paul B. Zbar.
- 3. Electronics devices, David A Bell, Reston Publishing Company/DB Tarapurwala Publ.
- 4. Electronic devices, applications and integrated circuits, Mathur, Kulshreshta and Chadha, Umesh Publications.

ELE CP-3: OP-AMPS AND LINEAR INTERGARTED CIRCUITS LAB (Minimum 12 experiments to be performed)

- 1. Inverting and Non-inverting amplifiers using Op-Amp (Determination of gain)
- 2. Frequency response of inverting Op-Amp (Determination of Bandwidth)
- 3. Frequency response of Non-inverting Op-Amp (Determination of Bandwidth)
- 4. Op-Amp as Adder(two inputs only)
- 5. Op-Amp as Subtractor(two inputs only)
- 6. Square wave generator using Op-amp(AMV)
- 7. Triangular wave generator using Op-Amp
- 8. Ramp generator using IC 555.
- 9. Instrumentation amplifier using Op-amp(Three op-amp circuit)
- 10. Phase shift oscillator using Op-amp(Determination of frequency of oscillation)
- 11. Wein-bridge oscillator using Op-amp (Determination of frequency of oscillation)
- 12. Clipping circuits-positive and negative clippers.
- 13. Clamping circuits-positive and negative Clampers
- 14. Astable multivibrator using IC 555
- 15. Monostable multivibrator using IC 555
- 16. Schmitt trigger using IC 555-determination of LTP and UTP
- 17. Op-amp as integrator
- 18. Op-amp as differentiator
- 19. Determination of Op-amp parameters (I_b , V_{io} , I_{io} , SR, FBW, CMRR).