BCA 3rd semester Syllabus w.e.f. 2025-26 onwards

	Paper 1	Operating System Con-	cepts	Credits: 4	Conta	ct Hours: 52	Theory 04 Hrs/week
ĺ	Internal ass	essment: 20 marks	Term e	nd exam: 80 m	narks	Exam	duration: 03 hrs

Course Outcomes (COs): At the end of the course, students will be able to:

- Explain the structure and functions of the operating system.
- Comprehend multithreaded programming, process management, process synchronization, memory management and storage management.
- Compare the performance of Scheduling Algorithms
- Identify the features of I/O and File handling methods

UNIT 1 10 Hrs

Introduction to Operating System: Definition, History and Examples of Operating System; Computer System organization; Types of Operating Systems; Functions of Operating System; Systems Calls; Operating System Structure.

UNIT 2 10 Hrs

Process Management: Process Concept- Process Definition, Process State, Process Control Block, Threads; Process scheduling- Multiprogramming, Scheduling Queues, CPU Scheduling, Context Switch; Operations on Processes Creation and Termination of Processes; Inter process communication (IPC)- Definition and Need for Inter process Communication; IPC Implementation Methods- Shared Memory and Message Passing;

UNIT 3 10 Hrs

Multithreaded Programming: Introduction to Threads; Types of Threads; Multithreading- Definition, Advantages; Multithreading Models; Thread Libraries; Threading Issues. CPU Scheduling: Basic concepts; Scheduling Criteria; Scheduling Algorithms; Multiple-processor scheduling; Thread scheduling; Multiprocessor Scheduling; Real-Time CPU Scheduling.

UNIT 4 12 Hrs

Process Synchronization: Introduction; Race Condition; Critical Section Problem and Peterson's Solution; Synchronization Hardware, Semaphores; Classic Problems of Synchronization- Readers and Writers Problem, Dining Philosophers Problem; Monitors. Deadlocks: System Model; Deadlocks Characterization; Methods for Handling Deadlocks; Deadlock Prevention; Deadlock Avoidance; Deadlock Detection; and Recovery from Deadlock.

UNIT 5 10 Hrs

Memory Management: Logical and Physical Address Space; Swapping; Contiguous Allocation; Paging; Segmentation; Segmentation with Paging. Virtual Memory: Introduction to Virtual Memory; Demand Paging; Page Replacement; Page Replacement Algorithms; Allocation of frames, Thrashing

Text Book

1. Operating System Concepts, Abraham Silberschatz, Peter Baer Galvin, Greg Gagne., 9th Edition, Wiley, 2012.

References:

- 2. Operating System Concepts Engineering Handbook, Ghosh PK, 2019.
- 3. Understanding Operating Systems, McHoes A et al., 7 th Edition, Cengage Learning, 2014.
- 4. Operating Systems Internals and Design Principles, William Stallings, 9th Edition, Pearson Education.
- 5. Operating Systems A Concept Based Approach, Dhamdhere, 3rd Edition, McGraw Hill Education India.
- 6. Modern Operating Systems, Andrew S Tanenbaum, 4th Edition, Pearson Education.

Paper-1Lab	LAB: Operating System	n Lab	Credits: 2	Conta	ect Hours: 52	Practical 04 Hrs/week
Internal asse	essment: 10 marks	Term end	l exam: 40 m	narks	Exam	duration: 02 hrs

Assignments based on the subject Paper-1: Operating System Concepts shall be implemented in the lab.

- 1. Basic UNIX Commands and various UNIX editors such as vi, ed, ex and EMACS
- 2. UNIX and Windows File manipulation commands
- 3. C Program For System Calls Of Unix Operating Systems (Opendir, Readdir, fork, getpid, exit)
- 4. C programs to simulate UNIX commands like cp, ls, grep.
- 5. Simple shell programs by using conditional, branching and looping statements (to check the given number is even or odd,the e given year is leap year or not, find the factorial of a number, swap the two integers)
- 6. To write a C program for implementation of Priority scheduling algorithms
- 7. To write a C program for implementation of Round Robin scheduling algorithms.
- 8. To write a C program for implementation of SJF scheduling algorithms
- 9. To write a C-program to implement the producer consumer problem using semaphores
- **10.** To write a C program to implement banker's algorithm for deadlock avoidance.
- 11. To write a c program to implement Threading and Synchronization Applications.
- 12. To write a C program for implementation of memory allocation FCFS and SJF scheduling algorithms.
- 13. To write a c program to implement Paging technique for memory management.
- 14. To write a c program to implement semaphores.
- 15. To write a c program to implement Bankers algorithm.

Evaluation Scheme for Lab. Term end Examination

Assessment Criteria	Marks				
Program-1	Writing the Program	05			
	Execution and Formatting				
Program-2	Writing the Program	05			
	Execution and Formatting	05			
Viva Voice		05			
Practical Record bo	05				
	Total	40			

		Credits: 4	Contact Hours: 52		Theory 04 Hrs/week
Algorithms					
Internal assessment: 20 marks		nd exam: 80 i	marks	Exam	duration: 03 hrs

Course Outcomes (COs): At the end of the course, students will be able to:

- the time complexity of an algorithm and asymptotic notation is used to provide classification of algorithms
- understand different computational models and their complexity(e.g., divide-and-conquer, greedy algorithms, dynamic programming, etc)
- analyze and design algorithms and the impact of algorithm design in practice
- write program to execute and analyze different algorithms
- understand the concepts of deterministic and non-deterministic algorithms.

UNIT 1 10 Hrs

Design of Efficient Algorithms and Elementary Data Structures: Algorithm specification, Performance analysis, Time and Space Complexity, Asymptotic notation, Review of Stack, Queues, Trees. Operations on Stack, Queue and Trees. Recursion, Heaps and Heap Sort

UNIT 2

Divide and Conquer: General Method, Binary Search, Max and Min, Merge Sort, Quick Sort, Matrix Multiplication and Related Operations; Strassen's Matrix Multiplication, Boolean Matrix Multiplication.

UNIT 3 10 Hrs

The Greedy Method: The General Method, Knapsack Problem, Job Sequencing with Deadlines, Minimum Cost Spanning Trees: Prim's Algorithm, Kruskal's Algorithm. Single Source Shortest Paths

UNIT 4 10 Hrs

Dynamic Programming: The General Method, Multistage Graphs, All Pair's Shortest Paths, 0/1 knapsack, Travelling Salesman Problem

UNIT 4 10 Hrs

Backtracking: General Methods, 8 – Queens Problem, Sum of Subsets, Knapsack Problem, NP – Hard and NP – Complete Problems.

Text Book:

1. Ellis, Horwitz, SartajSahani and Rajashekaran S., "Computer Algorithms", (1999) Galgotia Publications Pvt.,Ltd.

Reference Books:

- 1. Aho A.V, Hopcroft J.E and Ullman, J.D., "The Design and Analysis of Computer Algorithms", (1976) Addison Wesley.
- 2. Introduction to Algorithms, (2009) third edition, by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, MIT press.
- 3. Sara Baase, Computer Algorithms, "An Introduction to Design and Analysis", Addison Wesley.

- 4. Allen Weiss (2009), Data structures and Algorithm Analysis in C++, 2nd edition, Pearson education, New Delhi.
- 5. R. C. T. Lee, S. S. Tseng, R.C. Chang and T. Tsai (2006), Introduction to Design and Analysis of Algorithms A strategic approach, McGraw Hill, India.

Paper-2 Lab	LAB: Algorithms La C/JAVA	b. Using	Credits: 2	Conta	act Hours: 52	Practical 04 Hrs/week
Internal asses	ssment: 10 marks	Term end	exam: 40 ma	ırks	Exam	duration: 02 hrs

Assignments based on the subject Paper-2: **Introduction to Algorithms Design** shall be implemented in the lab.

- 1. Program to construct a stack of elements and to perform the following operations on: push, pop, status, empty, full, display
- 2. Program to construct a queue of integers and to perform following operations on it: enqueuer, de-queue, status, empty, full
- 3. Program to implement
 - a. Binary Search,
 - b. Max and Min,
 - c. Merge Sort,
 - d. Quick Sort,
 - e. Strassen's Matrix Multiplication,
 - f. Boolean Matrix Multiplication
- 4. Program to implement
 - a. Job Sequencing with Deadlines,
 - b. Prim's Algorithm,
 - c. Kruskal's Algorithm
- 5. Program to implement All Pair's Shortest Paths
- 6. Dijkstras Algorithm
- 7. Program to implement all pair shortest problem using dynamic programming technique
- 8. Program to solve Travelling Salesman Problem

Evaluation Scheme for Lab. Term end Examination

Assessment Criteria	Marks						
Program-1	05						
	05						
Program-2	Writing the Program	05					
	Execution and Formatting	05					
Viva Voice	Viva Voice						
Practical Record bo	05						
	Total	40					

Paper 3 Theory of Computation		Credits: 4	Conta	ct Hours: 52	Theory 04 Hrs/week	
Internal ass	sessment: 20 marks	Term e	nd exam: 80 i	narks	Exam	duration: 03 hrs

Course Outcomes (COs): At the end of the course, students will be able to:

- understand basic concepts of formal languages of finite automata techniques
- Design Finite Automata's for different Regular Expressions and Languages
- Construct context free grammar for various languages
- solve various problems of applying normal form techniques, push down automata and Turing Machines.

Unit 1 10 Hrs

Introduction to formal proof – Additional forms of proof – Inductive proofs – Finite Automata (FA) – Deterministic Finite Automata (DFA) – Non-deterministic Finite Automata (NFA) – Finite Automata with Epsilon transitions.

Unit 2 10 Hrs

Regular Expression – FA and Regular Expressions – Proving languages not to be regular – Closure properties of regular languages – Equivalence and minimization of Automata.

Unit 3` 12 Hrs

Context-Free Grammar (CFG) – Parse Trees – Ambiguity in grammars and languages – Definition of the Pushdown automata – Languages of a Pushdown Automata – Equivalence of Pushdown automata and CFG– Deterministic Pushdown Automata.

Unit 4

Normal forms for CFG – Pumping Lemma for CFL – Closure Properties of CFL – Turing Machines – Programming Techniques for TM.

Unit 5 10 Hrs

A language that is not Recursively Enumerable (RE) – An undecidable problem that is RE – Undecidable problems about Turing Machine – Post's Correspondence Problem – The classes P and NP.

Text Book

1. J.E. Hopcroft, R. Motwani and J.D. Ullman, "Introduction to Automata Theory, Languages and Computations", second Edition, Pearson Education, 2007.

References:

- 1. H.R. Lewis and C.H. Papadimitriou, "Elements of the theory of Computation", Second Edition, Pearson Education, 2003.
- 2. Thomas A. Sudkamp," An Introduction to the Theory of Computer Science, Languages and Machines", Third Edition, Pearson Education, 2007.
- 3. Raymond Greenlaw an H.James Hoover, "Fundamentals of Theory of Computation, Principles and Practice", Morgan Kaufmann Publishers, 1998.
- 4. Micheal Sipser, "Introduction of the Theory and Computation", Thomson Brokecole, 1997

BCA 3th semester Syllabus w.e.f. 2026-27 onwards

Paper-1Lab	LAB: Theory of Computation	Credits:2	ContactHou	rs:52	Practical04Hrs/week
Internalassess	ment:10 marks	Termendexai	n:40marks		Examduration:02hrs

Course Outcomes(COs):

Programs for practical

PART-A

- 1. Design a DFA that accepts all strings over {0,1} ending with '01'.
- 2. Construct an NFA for the language of strings over {a,b} containing substring 'ab'.
- 3. Convert a given NFA into an equivalent DFA.
- 4. 4. Minimize a given DFA using the state minimization algorithm.
- 5. 5. Construct a DFA for the language of binary strings divisible by 3.
- 6. Construct a regular expression for the language of strings over {a,b} with even number of a's.
- 7. Convert a given regular expression into an NFA using Thompson's construction.
- 8. Prove that the language $L = \{a^nb^n \mid n \ge 0\}$ is not regular using pumping lemma.
- 9. Design a context-free grammar (CFG) for palindromes over {0,1}.
- 10. 10. Convert a given CFG into Chomsky Normal Form (CNF).

PART-B

- 11. Construct a PDA for the language $L = \{a^nb^n \mid n \ge 0\}$.
- 12. Construct a PDA for the language $L = \{ww^R \mid w \in \{a,b\}^*\}$.
- 13. Prove that the language $\{a^nb^nc^n \mid n \ge 0\}$ is not context-free.
- 14. Design a Turing Machine to accept the language $L = \{a^nb^n \mid n \ge 0\}$.
- 15. Construct a Turing Machine to compute the function f(n) = n+1 in unary representation.
- 16. Construct a Turing Machine to decide whether a binary string has equal number of 0's and 1's.
- 17. Show that the Halting problem is undecidable.
- 18. Demonstrate closure properties of regular languages with suitable examples.
- 19. Demonstrate closure properties of context-free languages with suitable examples.
- 20. Construct a Turing Machine to recognize palindromes over {0,1}
 - 1. and perform operations on DataFrames.

Evaluation Scheme for Lab. Term end Examination

Assessment Crite	ria	Marks			
Program-1	Writing the Program	05			
	Execution and Formatting				
Program-2	Writing the Program	05			
	Execution and Formatting	05			
Viva Voice		05			
Practical Record	05				
	Total	40			