M.Sc. III-SEMESTER

Semester	Category	tegory Title of the Paper	Marks		Teaching			Credit	Duration of SEE	
No.			IA	SEE	Total	L	T	Р	Creuit	(Hrs)
	HCT31	Applied Inorganic Chemistry	20	80	100	4	-	-	4	3
	HCT32	Theoretical and Solid State Chemistry	20	80	100	4	-	-	4	3
	HCT33	Spectroscopy	20	80	100	4	-	-	4	3
	SCT31	Heterocyclic and Synthetic Organic Chemistry	20	80	100	4	-	-	4	3
THIRD	SCT32	Medicinal Chemistry	20	80	100	4	-	-	4	3
	SCT33	Agro, Health and Medicinal Care Chemicals	20	80	100	4	-	-	4	3
	OET31	Instrumental Analytical Techniques	10	40	50	2	-	-	2	2
	OET32	Bioanalytical Techniques	10	40	50	2	-	-	2	2
	HCP31	Inorganic Chemistry Practicals-III	10	40	50	-	-	4	2	4
	HCP32	Physical Chemistry Practicals-III	10	40	50	-	-	4	2	4
	SCP31	Organic Chemistry Practicals – III	10	40	50	-	-	4	2	4
	Total N	Marks for III Semester			600				24	

M.SC. CHEMISTRY THIRD SEMESTER

Course Title: APPLIED INORGANIC	Course Code: HCT31
CHEMISTRY	
Teaching Hours/Week (L-T-P): 4 - 0 - 0	No. of Credits: 04
Internal Assessment: 20 Marks	Semester End Examination: 80 Marks

1.	To acquint with the applications of organometallic chemistry
2.	Understand the importance and applications of nuclear chemistry
3.	To gain knowledge on bioinorganic chemistry related to biological processes
4.	To provide advanced aspects of halogen chemistry

Unit	Description	Hours
01	Reactions and Catalytic Applications of Organometallic Compounds Fundamental reactions: Substitution in carbonyl complexes, Mechanisms, Insertion reactions, CO, SO2, olefin insertions, oxidative additions, one electron, addition of oxygen, reductive elimination, CH activation, Use of Organometallic Compounds as catalysts – Catalytic behaviour – Homo catalysis –. Anchoring of Catalysts Hydrogenation. Hydrogenation of olefins (oxo reaction-cobalt and rhodium oxo catalysts), carbonylation of alcohols – Monsanto acetic acid process, Wacker process. Polymerization of olefins and acetylenes: Ziegler – Natta catalysis systems. Fischer – Tropsch reaction, Water Gas Shift reactions.	15hrs
02	Bioinorganic Chemistry-I Metal ions in biological systems, essential and trace metals, disease due to metal deficiency and treatment: Iron, zinc, copper, manganese, sodium, potassium, magnesium and calcium. Metal complexes as therapeutic agents: Metal complexes in cancer therapy, metal complexes for the treatment of rheumatoid arthritis, vanadium in diabetes, metal complexes as radio diagnostic agents. Treatment of toxicity due to inorganics: Chelation therapy and requirements of a chelate/antidote. Mechanism of antidotes with poison rendering it inert: Arsenic, lead, mercury, iron, copper, plutonium, cyanide and carbon monoxide poisoning. Ion transport across membranes and active transport of ions across biological membranes, ionophores. Metal complexes in transmission of energy: Chlorophyll, photo systems-I and II in cleavage of water and model systems.	15hrs
03	Nuclear Chemistry Nuclear Stability – Mass Defect and Binding Energy	15hrs

Radioactivity: Radioactive elements, general characteristics of radioactive					
	decay, interaction of α , β and γ – rays with matter. Nuclear reactions				
	Radioactivity: Synthesis of various useful isotones use of isotones in the				
	elucidation of reaction mechanism, structure determination, kinetics of				
	exchange reactions, measurement of physical constants including the				
	diffusion constants, isotope dilution techniques, NAA, PGNAA, neutron				
	absoptiometry and age determination, radio isotopes in field of medicine				
	Halogens in positive oxidation states, Chemistry of Astatine.				
	Lanthanide series: Review on electronic structure, oxidation states,				
	spectral and magnetic properties, lanthanide contraction, abundance and				
	extraction. Lanthanides as shift reagents.				
	Separation of lanthanides: Solvent extraction and ion-exchange. Chemical				
04	properties of compounds of lanthanides in II, III, and IV oxidation states.	15hrs			
	Actinides: Review on Electronic structure and position in the periodic				
	table, oxidation states, occurrence and synthesis of the elements. Spectral				
	and magnetic properties of compounds of actinides in comparison with				
	those of lanthanides and d-block elements. Trans actinides Chemistry of				
	Trans –uranium elements.				
Referen	ces:				
l. Inor	ganic Chemistry-Principles of Structure and Reactivity, 4thEdn-J. E. Huhee	су, Е.А.			
2 Shr	iver & Atkins' Inorganic Chemistry 5th Edn P. Atkins, Ting Overton, I.	Dourke			
2. Sintver & Atkins morganic Chemistry, 3th Edn-P. Atkins, 1tha Overton, J. Kourke, Mark Weller and F. Armstrong Oxford University Press (2010)					
A Concepts and models of Inorganic Chemistry P Douglas D. McDaniel & I Alexander					
5. Concepts and models of inorganic Chemistry-B.Douglas, D. McDaniel & J.Alexander, 3rd Edn. Wiley Student Edn (2012)					
4 Fun	damentals of photochemistry-K K Robatgi-Mukheriee Revised Edn Ne	w Age			
4. Fundamentals of photochemistry-K. K. Konalgi-Mukherjee, Kevised Edn. New Age					
5. Ferraudi G. L. Elements of Inorganic photochemistry Wiley Eastern 1988					
6 Photochemistry and Photophysics of Ru(11) polylpyridine complexes in the Bologna					
group. From early studies to recent developments. Coodination chemistry reviews					
Vincenzo Balzani, Alberto Juris, 211, 97-115 ((2001)).					
7. F.A.Cotton and G.Wilkinson : Advanced Inorganic Chemistry, Wiley, 1991.					
8. Environmental Chemistry-A. K. De (Wiley Eastern).					
9. Environmental Chemistry-S. K. Banerii, (Prentice Hall India), 1993.					
Course outcomes:					
1.	Acquint and able to apply organoometallic reactions.				
2.	Learn to apply nuclear chemistry to related applications				
3.	Able to prepare and comment on properties of various halogen compounds				
4 Gain knowledge on the importance of inorganic chemistry in biological porcesses					
Course Title: THEORETICAL AND SOLID Course Code: HCT32					
STATE (CHEMISTRY				

No. of Credits: 04

Teaching Hours/Week (L-T-P): 4 - 0 - 0

3

1.	Understand the concepts of thermodynamics and statistics
2.	Gain knowledge in the area of quantum chemistry
3.	Study the solid state properties of materials
4.	Acquint with the knowledge of colloids

Unit	Description	Hours
01	Statistical Thermodynamics and Quantum Statistics: Microstates' and Microstates, Assemblies of localized and Non-localized systems, Phase space, γ -Space, μ -Space, andEnsembles. Classical Statistics: Maxwell-Boltzman distribution law for ideal gases and mixture of gases equipartition of energies, Maxwell-Boltzman distribution of velocities and energies(no derivation). Quantum Statistics: Relationships between probabilities and entropy, Sterling approximation. Bose-Einstein, Fermi-Dirac and Maxwell- Boltzmann Statistics and comparison between them. Heat capacity of Ortho-Para hydrogen systems. Einstein'sheat capacity for solids. Partition Function: Definition and separation of partition functions. Translational, Vibrational, Rotational and Electronic partition functions for Monoatomic, Diatomic, andPolyatomic gaseous molecules. Sackur- Tetrode equation. Calculation of thermodynamic quantities in terms of partition functions, Residual entropy.	15hrs
02	 Quantum Chemistry: Review of concepts of operators. Applications of Schrödinger wave equation to Hydrogen like atoms, rigid Rotor, Harmonic oscillators and HartreeSelf consistent field theory. Ab intio and Density functional analysis. Approximation Methods-Variation theory and Perturbation theory (zero, first,). MO Theory: MO Theory of Hydrogen molecule and ion, Bonding and Anti-bonding orbitals. Examples of MO of simple HOMO and HETERO nuclear molecules. Notations of few molecular orbitals, correlation diagrams and Non-crossing rules, Simple Huckel theory of linear conjugated systems (HMO) and applications to systems like, ethylene and butadiene molecules. VB Theory: Secular equation and determinants, Columbic, exchange and overlap integrals. VB theory of H2 molecule. Comparison of VB and MO theories. 	15hrs
03	 Solid State Chemistry: Solid state reactions: General principles and classification of reactionsMethods of Single Crystal Growth: Solution growth; Melt Growth-Bridgeman, Instrumentation Thermal analysis: TGA, DTA, DSC (Instrumentation, applications in characterizing solid materials) 	15hrs

	 Electrical properties: Band theory of solids; semiconductors - extrinsic and intrinsic, Hall effect; thermoelectric effects (Seebeck); Fermi energy levels and their determination for semiconductors. ferroelectric, pyroelectric and piezoelectric properties; ionic and superionic conductors.Superconductivity: Basics, discovery and high Tc materials Magnetic properties: dilute and concentrated magnetic systems. Dia, para, ferro, ferri, and antiferro magnetic types; soft and hard magnetic materials; select magnetic materials such as spinels, garnets and perovskites and hexaferrites magnetoresistance and giant magnetoresistance. Understannding. Optical properties optical, reflectance, photoconductance structure and properties of amorphous materials (glasses) and zeolites 	
04	Themodynamics, Non-equilibrium Thermodynamics and Colloids: Solutions: Introduction, partial molar quantities, Gibb's function of mixing and other thermodynamic mixing functions(Gibbs-Duhmen and Duhmen-Margules equations), chemical potential of liquids and liquid mixtures, Excess function for non-ideal solutions. Non-equilibrium Thermodynamics: Microscopic reversibility, entropy production in irreversible process. Different types of forces and fluxes, stationary states. phenomenological equations. Onsagar's reciprocity relations (quantitative), Principle of minimum entropy production, phenomenological in non-linear region. Colloids: Electro kinetic phenomena of colloids, Classification of Surface active agents, Critical Micellar concentration (CMC), determination of Surface tension by different Method'.	15hrs

References :

- 1. Theoretical Chemistry- Glasstone.
- 2. Statistical Mechanics- Davidson.
- 3. Elements of Statistical Thermodynamics- E. K. Nash
- 4. Statistical Thermodynamics- M.C.Gupta
- 5. Introduction to Quantum Chemistry- A.K.Chandra
- 6. Quantum Chemistry- R.K.Prasad
- 7. Textbook of Quantum Mechanics-P M Mthews & P Venkateshan
- 8. Problems in Quantum Mechanics- G.L.Squiras.
- 9. Introduction to Solids- I. V. Azarrof.
- 10. Solid State Chemistry- A.R.west
- 11. Modern aspects of Solid State Chemistry- Ed. By C.N.Rao
- 12. New direction in Solid State Chemistry- C.N.Rao & Gopal Krishnan
- 13. Thermodynamics by L.M. Koltz & R.M. Rosenberg
- 14. Thermodynamics by Glasstone
- 15. Physical Chemistry by P.W. Atkins.
- 16. Molecular Quantum Chemistry by A. J. Atkins.
- 17. P. Ball, Designing the Molecular World: Chemistry at the Frontier,

1.	Able to apply thermodynamic aspects in chemical reactions
2.	Apply quantum chemistry aspects for various compounds
3.	Interpret the the properties of solid state materials and colloids

Course Title: SPECTROSCOPY	Course Code: HCT33
Teaching Hours/Week (L-T-P): 4 - 0 - 0	No. of Credits: 04
Internal Assessment: 20 Marks	Semester End Examination: 80 Marks

1.	To understand the basic concepts of spectroscopy
2.	To gain knowledge on principle and instrumentation
3.	To familiarize with the working and applications

Unit	Description	Hours
01	IR Spectroscopy IR Spectroscopy: Basic principles of vibrational spectroscopy, Theory of Infrared Absorption, Vibrational modes and molecular vibrations, calculation of vibrational frequencies. Relationship between molecular structure and IR spectra.Instrumentation:Types of IR spectrometers, Single bean and double beam, Key components: source, interferometer, detector, Quantitative Analysis with IR Spectroscopy: Basics of Quantitative Analysis, Beer-Lambert Law and its application in IR spectroscopy, Calibration methods for quantitative measurements, Sample Preparation and Handling of solid, liquid, and gaseous samples, interpretation of IR spectra, factors affecting group frequencies and band shapes. IR spectra of coordination modes of ligands like nitrate, thiocyanate, sulphate, carbonate (bridging, bidentate etc.,) and water.Applications in Analytical Chemistry. Advanced IR Techniques: ATR (Attenuated Total Reflection) Spectroscopy: Principles and applications, Advantages over traditional transmission measurements.	15hrs
02	HNMR Spectroscopy Introduction – Nuclear spin and magnetic moment, origin of NMR spectra, Theory of NMR spectroscopy, resonance flipping, instrumentation and sampling, inter pretation of NMR spectrum, equivalent and non-equivalent protons, chemical shifts(down field and up field), factors influencing chemical shifts, anisotropic effects, NMR scale, units, internal references, simple and complex splitting / coupling, coupling constant, correlation chart of chemical shifts, spin-spin relaxations, equivalence of protons–chemical and magnetic equivalence, spin– systems. solvent effects and Nulear Overhauser Effect. Karplus relationships (Karplus curve–variation of coupling constant with dihedral angle), double resonance techniques, first order and second order patterns, lanthanide shift reagents, exchange phenomena High resolution 1H NMR. FT NMR and its advantages. Applications of NMR spectroscopy in structure elucidation of simple organic and inorganic molecules. Pulse techniques in NMR, two dimensional and solid state NMR. Use of NMR in Medical diagnostics. Deuterium exchange techniques limitations of H NMR spectroscopy .	15hrs

03	Introduction and applications of 13C NMR spectroscopy , Broad band and off resonance coupling methods of detection. 13C Chemical shifts of different classes of organic compounds–alkanes, alkyl halides, alkenes, alcohols, ethers, carbonyl compounds and aromatic compounds. 2 DNMR spectroscopy, use of PMR spectrum in structural elucidation of organic compound. ³¹ P and ¹⁹ F NMR. COSY, NOESY (Nulear Overhauser Effect) and EXSY (Exchange Spectroscopy), MRI. Conformational analysis, keto- enol tautomerism, Hbonding. Spectra of simple organic molecules, phosphates, polyphosphates, PH ₃ , phosphor halides, fluoro acetic acid, SF ₄ , P ₄ S ₄ , HPF ₂ . Raman Spectroscopy: Raman and Rayleigh scattering, Stokes and anti-Stokes lines, polarization of Raman lines, depolarization factor, polarizability ellipsoid. Classical theory of Raman Effect – rotational Raman spectra – Linear – Vibrational Raman Spectra, rule of mutual exclusion principle.Instrumentation. Resonance Raman Spectroscopy: Resonance Raman Effect and its applications. Non-linear Raman effects: Hyper, stimulated and inverse Raman effects. Coherent Anti-Stokes Raman Scattering and its	15hrs
04	 applications Mass Spectroscopy: Introduction, Basic theory, ionsation, types of ions, molecular ion, fragment ion, meta stable ion, base peak, instrumentation, factors affecting fragmentation, intensity of M⁺ peaks of alkanes, alkenes, alkynes, alcohols, amines, aldehydes and other compounds, Mc Laffarty rearrangement nitrogen rule, some simple examples of fragmentations, applications of mass spectrometry. Advanced Mass Spectrometry Techniques: Introduction to advanced MS techniques such as tandem MS (MS/MS) and high-resolution MS (HRMS). Gas Chromatography (GC): Principle, instrumentation, columns, detectors (thermal conductivity, flame ionization, electron capture, mass spectrometry), factors affecting separation, applications, GC-MS and its applications. High-Pressure Liquid Chromatography (HPLC): Apparatus, pumps, column packing, characteristics of detectors (UV, IR, refractometer, fluorescence), advantages, applications, HPTLC, and its applications. Hyphenated Techniques: Introduction to hyphenated techniques like LC-MS/MS and GC-MS/MS. Advantages and applications of combining chromatography with mass spectrometry. 	15hrs

References:

- 1. Mass Spectrometry: Principles and Applications" by Edmond de Hoffmann and Vincent Stroobant (John Wiley & Sons).
- **2.** Interpretation of Mass Spectra by Fred W. McLafferty and FrantišekTureček (University Science Books).
- 3. Mass Spectrometry in Chemistry and Biochemistry by Victor R. Preedy (CRC Press).
- **4.** "Introduction to Mass Spectrometry: Instrumentation, Applications, and Strategies for Data Interpretation" by J. Throck Watson and O. David Sparkman (John Wiley & Sons).
- **5.** "Liquid Chromatography-Mass Spectrometry: An Introduction" by Robert E. Ardrey (John Wiley & Sons).
- **6.** Fundamental of Analytical Chemistry. D.A.Skoog, D.M.West, Holler and Crouch 8th edition, 2005, Saunders College Publishing, New York.
- 7. Analytical Chemistry. G.D. Christian, 5thedn, 2001 John Wiley & Sons, Inc,India.
- **8.** Gas Chromatography Mass Spectrometry: Principles, Applications, and Reference Standards" by Jean-Francois Focant and Pat Sandra (Academic Press).
- **9.** Tandem Mass Spectrometry: Molecular Characterization" by G. L. Glish and J. V. F. Martin (Wiley-Interscience).
- **10.** "Practical LC-MS Method Development" by John W. Dolan and Thomas J. Moon (CRC Press).
- **11.** An introduction to Magnetic Resonance spectroscopy, D.N. Sathyanarayana, I.K. International, 2013.
- Spectroscopy of Organic compounds P.S. Kalsi, New Age International Publications, New Delhi (6th Edn.), 2007.
 - **13.** Organic Spectroscopy William Kemp 3rd Edn. ELBS, 1991
- 14. Instrumental methods of analysis. L. L. Meritt, J. A. Dean, F.A., settle 6th Edn. (Van Nostnoand).
- 15. Principles of Instrumental Analysis. D. S. Kooj (Sander Colley).
- **16.** Fundamentals of Analytical Chemistry. Skoog, West, Holler, 7Th Edn. Harcourt Agra. Publication Harcourt College Publishers.
- 17. Principles of instrumental analysis. Skoog, Haller, Nieman, 5th Edn. Harcourt.
- 18. Treatise an analytical chemistry. F. J. Kohthiff& F. T. Elhiy, (M. Interscience).
- **19.** Nuclear and Radiochemistry. G. Dridelandey, J. M. Millar, M. M. Keondy& E. S. Macias (John Willey).
- 20. Essentials of Nuclear Chemistry. H. J. Arnikar (Wiley Eastern).
- 21. Text Book of quantitative chemical analysis. A.I. Vogel (ELBS).
- 22. Introduction to NMR Spectroscopy R.J. Abraham, J. Fisher, P. Loftus, Wiley Publications, 1988.

1.	Acquint and able to apply spectroscopic techniques for qualitative and
	quantitative analysis
2.	Skilled with their handling and interpretation of data

Course Title: HETEROCYCLIC AND	Course Code: SCT31
--------------------------------	--------------------

SYNTHETIC ORGANIC CHEMISTRY	
Teaching Hours/Week (L-T-P): 4 - 0 - 0	No. of Credits: 04
Internal Assessment: 20 Marks	Semester End Examination: 80 Marks

1.	To understand the basic concepts of heterocyclic compounds
2.	To gain knowledge on principle and mechanism involved in photochemical, pericyclic
	and retro synthesis.
3.	To acquire theroretic skills in bond extension reactions

Unit	Description	Hours
01	 Heterocyclic compounds: Nomenclature of heterocyclic compounds. Synthesis (Each two methods) and reactivity (towards electrophilic and nucleophilic reactions) – Pyrroles, Furans, Thiophenes, Pyridines, Azepines, Oxepins, Thiepins. Fused heterocycles: Synthesis (Each two methods) and chemical properties towards electrophilic and nucleophilic reactions of benzopyrroles, benzofurans, benzothiophenes, quinolines and isoquinolines. Mesoinonic compounds: Nomenclature, synthesis, reactions and applications of Sydnones 	15hrs
02	 Photochemistry and Pericyclic reactions: Photochemistry and concerted reactions: Introduction, light absorption and electronic transitions, Jablonski diagram, intersystem crossing, energy transfer, sensitizers, quenchers Photochemistry of olefins, conjugated dienes, aromatic compounds, ketones, enones, photooxidations, photoreductions Norrish type I and II reactions, Paterno-Buchi reaction, Barton reaction, Di-pi-methane rearrangements. Pericyclic reactions: Electrocyclic reactions: Stereochemistry, Symmetry and Woodward-Hofmann rules for electro cyclic reactions, FMO theory of electrocyclic reactions, correlation diagram for cyclobutadine and cyclohexadiene systems. Cycloaddition reactions: [2+2] [3+2] and [4+2] cycloadditions, analysis by FMO and correlation diagram method. Sigmatropic reactions: Classification, stereochemistry and 	
03	Retro synthesis via disconnection approach:Organic Synthesis: Introduction to synthons, synthetic equivalents, functional group interconversions,3Protection and de-protection in organic synthesis – Protection of hydroxyl, carboxyl, carbonyl, amino, thiol groups and their de- protection. Illustration of protection and deportation in organic synthesis with examples. Disconnection approach: One group C-X disconnection- Carbonyl	

	compounds, ethers and sulphides (Benzyl benzoate, propanil, p-			
	methyanisole, isopentyl benzyl ether, chlorobenside).			
	Two group disconnection- 1, 1- difunctionalized compounds (Acetals,			
	cyanohydrins, amino acids etc.), 1,2-difunctionalized compounds (1,2-			
	dicarbonyl compounds, α - hydroxyl carbonyl compounds).			
	Retrosynthesis: Retrosynthesis of benzocaine, 4-methoxy			
	acetophenone, saccharin, bisvoline, canthredine, lycorane and multstrin.			
	Named reactions:			
	C-C Bond forming reactions: Aldol condensation, Claisen			
	condensation reaction, Michael reaction, Robinson annulations, Stobbe			
	Bischler Napieralski Dieckmann condensation Knoevenagel			
	condensation. Mannich reaction.			
04	Coupling reactions: Hiyama cross-coupling reaction, Negishi cross-	15hrs		
	coupling reaction, Stille coupling, Suzuki – Miyaura coupling,			
	C-N Bond forming reactions: Buchirer reaction, Buchwald – Hartwig			
	amination, Stork enamine reaction, Hofmann – Loffler – Freytag			
	reaction, Barton reaction.			
	C-O Bond forming reactions: Dakin reaction, Mislow – Evans			
Rof	rearrangement, Mukaryama reagent, Dayer – Vinager reaction.			
1 Mo	dern Synthetic Reactions HO House WA Benjamin			
11 1010				
2. So	me Modern Methods of Organic Synthesis, W Carruthers, Cambridge Univ. Pr	ess		
3. Pri	nciples of Organic Synthesis, R.O.C Norman and J.M. Coxon, Blackie Acader	nic &		
Prot	fessional			
4. Ad	vanced organic chemistry.F.A.carey and R.J.sunderberg			
5. Roo	d's Chemistry of Carbon Compounds, S. Coffey.			
6. Org	ganic Synthesis-Concept, Methods and Starting Materials, J. Fuhmop and G.			
Penzill	in.			
7. Gu	ide Book to Organic Synthesis, R.K. Mackie & D.M. Smith, ELBS.			
8. Org	anic Synthesis, V.K. Ahuwalia and Renu Agarwal, Narosa			
9. Syr	nthesis, Approaches in Organic Chemistry, R.K. Bansal, Narosa			
10. Ad	10. Advanced Organic Chemistry -Reactions, Mecha- nism and Structure. Jerry March. John			
Wiley.		-		
11. De	signing Organic Synthesis, S.Warren, Wiley.			
12.	Organic Synthesis, Stuart warren, 2012 John Wieley and sons camebridge Uni	versity.		

1.	Able to carry out complex organic reactions	
2.	Predict the reaction mechanism and conditions for reaction and synthetic applications.	
Course 7	Title: MEDICINAL CHEMISTRY	Course Code: SCT32
Teaching Hours/Week (L-T-P): 4 - 0 - 0		No. of Credits: 04
Internal	Assessment: 20 Marks	Semester End Examination: 80 Marks

1.	To understand the basic concepts of medicinal chemistry
2.	To gain knowledge on drug action, designing and pharmacokinetics.
3	To acquint with the process of drug discovery

Unit	Description	Hours		
01	Introduction to Medicinal Chemistry: History and development of medicinal chemistry, Physicochemical properties in relation to biological action, Ionization, Solubility, Partition Coefficient, Hydrogen bonding, Protein binding, Chelation, Bioisosterism, Optical and Geometrical isomerism. Drugs: Essential Drugs, Nomenclature of Drugs, Routes of Drug Administration, Adverse effects of Drugs, IUPAC Naming of Drugs.	15hrs		
02	Drug discovery process : Brief introduction to bioinformatics and chemo informatics, Molecular modeling: Energy minimization, geometry optimization, conformational analysis. Drug discovery process: Computer Aided Drug Design (CADD), Development of New Drugs, Factors Affecting development of New Drugs. Concept of prodrugs and soft drugs, Drug Receptors. Molecular docking: Rigid docking, flexible docking, manual docking. Autodock and Dock softwares with examples.			
03	Pharmacokinetics:Introductions, Drug Absorption, Distribution, Metabolism (Phase I and Phase II), Excretion and Toxicity (ADMET).Pharmacodynamics:Introduction, Drug receptor interaction, Types of Interactions, Enzyme Stimulation, Enzyme Inhibition, Membrane Active Drugs, QSAR- 2D QSAR and 3D-QSAR.			
04	Drug Action: Theories of Drug Action, Molecular Recognition in Drug- Receptor Binding, Enzyme Inhibitors (Modes of inhibition). Antibacterial, Antifungal, Antiviral and Anticancer drugs (Major drug classes, mechanism of drug action, Drug resistance). Analgesic Drugs, anesthetics (general, local), Neurotransmitters (adrenergic, cholinergic effects; psychopharmacology), CNS depressants (sedative/hypnotic, major/minor tranquilizers), CNS stimulants. Steroids.			

References:

- 1. The Organic Chemistry of Drug Design and Drug Action, by Richard B. Silverman, 2nd Edition. Elsevier Academic Press, 2004, ISBN 0-12-643732-7.
- 2.Foye's Principles of Medicinal Chemistry, 5th Edition, by David A. Williams and Thomas L. Lemke, Lippincott Williams & Wilkins, 2002.
- 3. Medicinal Chemistry: A Molecular and Biochemical Approach, 3rd Edition, by Thomas Nogrady and Donald F. Weaver, 2005.
- 4. Medicinal Chemistry, An Introduction, by Gareth Thomas, John Wiley & Sons, 2000.
- 5. The Practice of Medicinal Chemistry, ed. Camille Wemuth, Academic Press, 1996.

Selected Medicinal Chemistry Journals

- 1. Journal of Medicinal Chemistry
- 2. Journal of Medicinal Chemistry Letters (starting with 2010, Volume 1)
- 3. Bioorganic & Medicinal Chemistry
- 4. Bioorganic & Medicinal Chemistry Letters
- European Journal of Medicinal Chemistry 6.ChemMedChem

1.	Able to comments on the drug action
2.	Design the drug molecules based on their pharmacokinetics

Course Title: AGRO, HEALTH AND	Course Code: SCT33
MEDICINAL CARE CHEMICALS	
Teaching Hours/Week (L-T-P): 4 - 0 - 0	No. of Credits: 04
Internal Assessment: 20 Marks	Semester End Examination: 80 Marks

1.	To understand the chemistry of general chemicals of routine use
2.	To gain knowledge on the composition of agro chemicals and health care chemicals.
3.	To acquire concepts and metholdology of clinical chemistry

Unit	Description	Hours
	Fertilizers: Introduction, Essential plant Nutrients, Classification of	
	Essential Nutrients, Primary Nutrients, Secondary Nutrients,	
	Micronutrients, Macronutrients, Classification of Fertilizers Straight	
	Fertilizers, Compound/Complex Fertilizers, Fertilizer Mixtures, Feed	
	Stock/ Raw materials- Nitrogenous Fertilizers, Phosphatic Fertilizers,	
	Potassic Fertilizers, Manufacture and general properties of Fertilizer	
	products- Intermediates- Ammonia, Nitric Acid, Sulphuric Acid,	
	Phosphoric Acid, Nitrogenous Fertilizers- Ammonium Sulphate,	
01	Ammonium Nitrate, Calcium Ammonium Nitrate, Calcium Nitrate,	15hrs
	Ammonium Chloride, Urea, Phosphatic Fertilizers, Ground Rock	
	Phosphate, Single Superphosphate, Triple Superphosphate, Potassic	
	Fertilizers- Potassium Chloride (Muriate of Potash), Potassium Sulphate	
	(Sulphate of Potash), Potassium Nitrate, Complex Fertilizers-	
	Ammonium Phosphate Sulphate, Ammonium Phosphates, Mono	
	Ammonium Phosphate (MAP), Di-Ammonium Phosphate (DAP),	
	Nitrophosphates, Urea Ammonium Phosphates, NPK Complex	
	Fertilizers, Fertilizer mixtures-Physical Mixtures, Granulated Mixtures.	
	Insecticides: Introduction, classification, Organochlorine insecticides-	
	BHC, DDT, endosulfan, sevin, Insect pheromones, general introduction	
	and applications in integrated pest management. Repellents: Survey &	
	synthesis of the repellents-N,N-diethyltoluamide, 2-ethyl-1,3-	
02	hexanediol.	15hrs
	Fungicides: Introduction, Inorganic & organic fungicides, Systemic	
	fungicides-types & examples.	
	Herbicides: Introduction, study of sulfonyl ureas, Mechanism of action	
	and toxicities of insecticides, fungicides and herbicides.	
0.2	Pertumery: Introduction, Compounds used in pertumery and their	1.51
03	classification, methods of preparation and importance of phenyl ethanol,	Tohrs
	Y ara yara, Ionone musk ketone, musk ambrette, musk xylene, phenyl	

	acetic acid and its esters, benzyl acetate, synthetic musks and jasmine.			
	Essential oils: Source, constituents, isolation & uses.			
	Dyes: Classification of dyes according to the mode of applications and			
	according to the chemical constitution; Methods of preparation of			
	commercial dves of different classes with suitable examples: Typical			
	manufacturing processes of dyes: Fluorescent brightening agents			
	Oils soans and Detergents: Refining of edible oils manufacturing of			
	soans detergents classification-anionic cationic non-ionic and			
	soaps, detergents detergent huilders and additives liquid soans			
	amphoteric detergents, detergent builders and additives, inquid soaps.			
	Manufacturing of fatty acids and glycerol, greases from fatty acids,			
04	Turkey red oil.	15hrs		
	Clinical Chemistry: Composition of blood collection, and preparation			
	of samples, clinical analysis – serum electrolytes, blood glucose, blood			
	urea nitrogen, uric acid, albumin, globulin, barbiturates, acidic and			
	alkaline phosphates, Immunoassay, principals of radio immunoassay			
	and applications. The blood- gas analysis –trace elements in the body.			
Refer	rences:	1		
1. Sta	tistical Quality Control, 2nd Edn., Manohar Mahajan Dampat Rai and Sons, 1	995.		
2. Qu	2. Quality management: a process improvement approach, Fryman Mark A, Cengage			
learni	ng, 2002.			
3. Qu warfa	ality Control, Paranthaman D, Tata, McGraw Hill,1987. 4. Gupta R. N. Ch re and casuality management 2011	emical		
$5. V_{\rm V}$	vas M. N. Safety and hazards management in chemical industries 2013.	tlantic		
public	cation. 6. Dikshith T.S.S Safety evaluation of environmental chemicals. Net	w Age		
Intern	national, 1996.	8-		
7. Ch	emical Safety Matters-IUPAC-IPCS, Cambridge univ. Press, 1992.			
8. En	vironmental Chemistry, A.K. Dey, Wiley Eastern.			
9. En	9. Environmental Chemistry, S.K.Banerji, Prentice Hall India, 1993.			
10. C	10. Chemistry of Water Treatment, S.D. Faust and O.M. Aly, Butterworths, 1983.			
11. Ei	11. Environmental chemistry, Ahluwalia V K, Anne Books India, 2008.			
12. C	12. Chemistry for Environmental Engineering, Sawyer and McCarty, McGraw Hill,			
1978.	1978.			
13. E	nvironmental Chemistry, I. Williams, John Wiley, 2001 14. Engineering Che	emistry		
by Jai	in and Jain. $(1 + 1) = 1 + 1 = 1$	πλο		
15. If	idustrali electrochemistry by Pelicher 16. Modern Electrochemistry, Vol I,	IIA &		
	770) J.O.IVI. DUCKIES alle A.K.IV. Keeley hemical Engineers Hand Book 8th Edn Dohart H. Darmy Mc Crow Uill 100	05 18		
Princi	iples of Industrial Chemistry, C. A. Clausen and G. Matts	95.10.		
11110	pros or moustrial chemistry, C. 11. Chausen and G. Watts			

1	Able to understand the synthesis and composition of routinely used dyes, fertilizers and health care products				
2	2. Comment on their use and applications				
	Course ANAL	Title: YTICAL TECHN	INSTRUMENTAL IQUES	Course code: OET 31	

Total Contact Hours: 30	Course Credits: 02
Formative Assessment Marks: 10	Duration of ESA/Exam: 2h
Summative Assessment Marks: 40	

1.	Study the basics and fundamentals of analytical techniques
2.	Acquire knowledge on spectroscopic techniques for the analysis of simple compounds
3.	To understand the principle and applications of spectroscopic techniques for qualitative
	and quantitative analysis

Unit	Description	Hours
1	Introduction: Qualitative and quantitative analysis; Concentration terms; Sampling and its Importance Conductometry: theory, types of conductometric curves , Instrumentation and applications Potentiomtry: principle, instrumentation and applications Polarography, reference electrodes, dropping mercury electrode, instrumentation and applications Spectroscopic techniques: Interaction of electromagnetic radiation with matter, Beer-Lambart's law- Limitations; UV-Vis-Spectroscopy: Principle, Instrumentation and applications for determination of composition of metal to ligand; metal ions like Fe, Ti and biological samples FTIR spectroscopy: Principle, sample preparation, Instrumentation and applications for determination of functional groups of hydrocarbons, alcohols, carbonyl compounds, amines, etc Fluorescence Spectroscopy: Principle and applications	15
		1

 NMR Spectroscopy: Principle, sample preparation, chemical shift, factors affecting chemical shift, Interpretation of spectra and applications for simple molecules Mass spectroscopy:Principle, fragmentation process, factors affecting fragmentation, base peak and molecular ion peak, nitrogen rule, Interpretation of spectra and applications for simple molecules. Raman Spectroscopy: Principle, Instrumentation and applications X-ray diffraction: measurement of X-rays, GM counter, Ionization counter Semicinductor detectors, Scintillation counters, X-ray absorption and emission spectroscopy, Bragg's law, Debye Scherrer X-ray diffraction method applications Electron microscopic techniques: Principle, Instrumentation and application of SEM, TEM and AFM 	15 , 1 , 5
 References: 1. Fundamental of Analytical Chemistry, D.A. Skoog, D.M. West, Holler and Crouc edition, Saunders College Publishing, New York, (2005). 	1, 8 th

- 2. Analytical Chemistry, G.D. Christian, 5th ed, John Wiley & Sons, Inc, India (2001).
- **3.** Quantitative Analysis, R.A. Day and A.L. Underwood, 6th Edn, prentice Hall, Inc. New Delhi, 1993.
- **4.** Vogel's Textbook of Quantitative Chemical Analysis, J. Mendham, R.C. Denney, J.D. Barnes and M.J.K. Thomas, 6th edition, Third Indian Reprint. Pearson Education Pvt. Ltd., New Delhi, (2003).
- 5. Spectroscopy of Organic compounds P.S. Kalsi, New Age International Publications, New Delhi (6th Edn.), 2007.

1.	Capable to predict the structure of simple compounds
2.	Helps in scientific career

Course	Title:	BIOANALYTICAL	Course code: OET 32
TECHNIQU	ES		
Total Contac	et Hours: 30	0	Course Credits: 02
Formative A	ssessment I	Marks: 10	Duration of ESA/Exam: 2h
Summative A	Assessment	Marks: 40	

1.	Study the basics principles of separation techniques
2.	Understand the importance of separation techniques for qualitative and quantitative
	analysis
3.	Learn the principle and applications of basic spectroscopic techniques

Unit	Description	Hours	
	Distillation: Importance, Principle, methodology, distillation of high boiling		
	solvents, applications		
	Filtration: Principle, methodology and application		
	Crystallization: Principle, methodology and application		
	Ultracentrifugation: Principle, sedimentation constant, sedimentation		
1	equilibrium, sedimentation velocity, methodology and applications.		
1	Solvent extraction: Principle, Distribution law, types, methodology,	10	
	application for the extraction of Fe, Cu		
	Thin layer Chromatography: Principle, methodology, RF value, application		
	in identification and monitoring of the reaction		
	Electrophoresis: types, the basic of electrophoretic separations, migration rates		
	and plate heights, electro osmotic flow, instrumentation, capillary zone	;	
	electrophoresis, capillary gel electrophoresis, capillary isolectrophoresis		

2	 Column chromatography: Principle, methodology, application in identification and monitoring of the reaction Gas chromatography: Mobile phase, stationary phase, Principle, Components and instrumentation, applications in the analysis of volatile compounds, Assay High Performance liquid chromatography: Principle, Components and instrumentation, applications in the analysis of volatile compounds, Assay and purity UV-Vis-Spectroscopy: Principle, Instrumentation and applications for determination of composition of metal to ligand; metal ions like Fe, Ti and biological samples FTIR spectroscopy: Principle, sample preparation, Instrumentation and applications, alcohols, carbonyl compounds, amines, etc 	15
Refere	ences:	
1.	Fundamental of Analytical Chemistry, D.A. Skoog, D.M. West, Holler and Crouch, edition, Saunders College Publishing, New York, (2005).	8 th
2.	. Analytical Chemistry, G.D. Christian, 5th ed, John Wiley & Sons, Inc, India (2001).	
3.	Quantitative Analysis, R.A. Day and A.L. Underwood, 6th edition, prentice Hall, In Delhi, (1993).	c. New
4.	Vogel's Textbook of Quantitative Chemical Analysis, J. Mendham, R.C. Denney, J.J.	D.

Barnes and M.J.K. Thomas, 6th edition, Third Indian Reprint. Pearson Education Pvt. Ltd., New Delhi, (2003).

Course Outcomes:

1.	Capable to separate the simple products in a mixture
2.	Able to adopt the skills of separation

٦

Course Title: INORGANIC CHEMISTRY	Course Code: HCP31
PRACTICALS-III	
Teaching Hours/Week (L-T-P): 0 - 0 - 4	No. of Credits: 02
Internal Assessment: 10 Marks	Semester End Examination: 40 Marks

1.	To acquint with the analysis of industrial samples
2.	Hands-on training for the colorimetric analysis of the samples.
3.	Acquire knowledge o the analsis of natural samples.

60 hrs

List of Experiments:

Analysis of solder.
 Analysis of copper- nickel alloy.
 Analysis of pyrolusite ore.
 Analysis of steel
 Estimation of Iron content in Heamatite
 Estimation of Calcium and Magnesium by complexometric titrations
 Colorimetric determination of Fe, Ti and V

References:

1.	Vogel's Text book of Quantitative Inorganic Analysis – J.Basett, R.C.Denney,
	G.H.Jeffery and J.Mendhaman, Longamans Green and Company Ltd.
2.	Practical Inorganic Chemistry-G.Pass and H.Sutchliff
3.	General Chemistry Experiment- A.J.Elias
4.	Practical Inorganic Chemistry, G. Marr and B. W. Rockett, VonNostrand Reinhold
	Co., London 1972.

1.	Evaluate the industrial products for quantitative analysis
2.	Capable to perform spectrophotometric analysis

Course Title: PHYSICAL CHEMISTRY PRACTICALS-III	Course Code: HCP32
Teaching Hours/Week (L-T-P): 0 - 0 - 4	No. of Credits: 02
Internal Assessment: 10 Marks	Semester End Examination: 40 Marks

1.	To acquint with the conductometric and potentiometric titrations
2.	Study of kinetics, phase diagram, etc
3.	Gain knowledge on the surface tension.

List of Experiments:

1.	Effect of added salt (Uni-Uni and Bi-Bi salts.
2.	Determination of rate constant and order of reaction between K2S2O8 and KI
3.	Determination of equilibrium constant of reaction between KI + I2
	= KI ₃ by distribution method.
4.	Kinetic study of iodination of an acetone
5.	Study of kinetics of inversion of cane sugar by Polarimetry
6.	Phase diagram of three component system.
7.	Titration of p-Toludine against HCI by conductometry.
8.	Determination of end point of some typical titrations.
	(Precipitation & replacement) conductometrycally.
9.	Potentiometric titration of o-phosphoric acid against alkalies NaOH.
10.	Potentiometric titration of halide mixture against AgNO3.
11.	Titration of mixture of HCl, AcOH, CuSO4 against conductometrycally
12.	Determination of equivalent conductance at infinite dilution of a
	strong electrolyte and verification of Onsgars law.
13.	Potentiometric titration of Pb(NO3) ₂ vs EDTA
14.	Potentiometric titration of mixture of weak acids, HCOOH, CH+COOH,
	ClCH2COOH Vs NaOH Estimation of metal ions solution by plarographic method.
15.	Determination of surface tension.

References:

1.	Fridley's Practical Physical Chemistry- B.P.levitt.
2.	Advanced Practical Physical Chemistry- G.B.Yadav
3.	Experiments Practical Physical Chemistry- Shomaker
4.	Systematic experimental Physical Chemistry- S.W.Rajbhoj & T.K.Chondeker
5.	Senior Physical Chemistry Practical- Kholsa et.al

1.	Evaluate the conductometric and potentiometric titrations
2.	Capable to perform kinetics of reactions

Course Title: ORGANIC CHEMISTRY	Course Code: SCP31
PRACTICALS-III	
Teaching Hours/Week (L-T-P): 0 - 0 - 4	No. of Credits: 02
Internal Assessment: 10 Marks	Semester End Examination: 40 Marks

1.	To acquint with the analysis of industrial samples
2.	Hands-on training for the colorimetric analysis of the samples.
3.	Acquire knowledge on synthetic principles of simple organic compounds

List of Experiments:

I. Preparation of dyes and drug		
1.	Preparation of Methyl Orange	
2.	Preparation of Fluorescein	
3.	Synthesis of Crystal violet	
4.	Synthesis of Phenolphthalein	
5.	Preparation of paracetamol (acetaminophen)	
6.	Preparation of phenacetin	
7.	Synthesis of Sulfanilamide	
8.	Synthesis of Antipyrine	
9.	Synthesis of Aspirin	
II. Estimations		
1.	Estimation of Cholesterol by Colorimetry.	
2.	Estimation of Amino acids by Colorimetry.	
3.	Estimation of Proteins by Colorimetry.	
4.	Estimation of Carbohydrates by Colorimetry.	
5.	Iodine value of fat or oils	
6.	Estimation of Aspirin by titration	

References:

1.	Advanced Practical Organic Chemistry N K Vishnoi Second edition, Vikas Publishing
	House Pvt. Ltd, 1996
2.	Comprehensive Practical Organic Chemistry: Preparation and Quantitative Analysis Renu
	Aggarwal
3.	Systematic Laboratory Experiments in Organic Chemistry Arun Sethi, New Age
	International, 2003.
4.	Comprehensive Practical Organic Chemistry: Qualitative Analysis Ahluwalia V.K.
	Sunitha Dhingra
5.	Practical Organic Chemistry: Qualitative Analysis Bhutani S.P. Chhikara A, First edition,
	ANE books-new Delhi, 2009
6.	Vogel's Textbook of Practical Organic Chemistry Brian S. Furniss, 5th Edition, Pearson
	India, 2005.
7.	Laboratory techniques in Organic chemistry, V.K. Ahluwalia, Pooja Bhagat & Renu
	Aggarwal, I.K. International Publishing House Pvt. Ltd.
8.	Laboratory Manual of Organic Chemistry Raj K. Bansal. 5th edition, New Age
	international, 2008
9.	Practical Organic Chemistry F.G. Mann, B.C Saunders, Fourth edition, Pearson India,
	2009.

1.	Evaluate the industrial products for quantitative analysis
2.	Capable to perform spectrophotometric analysis