

Paper Code: CHEHCT 31

M.Sc. III Semester (CBCS) Degree Examination, June/July 2023 Subject: CHEMISTRY

Paper: Organic Chemistry – III (Spectroscopy)

Time: 3 Hours Max. Marks: 80

1. Answer any 8 of the following:

 $(8 \times 2 = 16)$

- a) State and explain Beer-Lambert's law.
- b) Anti-stokes lines are less intense than the corresponding stokes line Justify.
- c) An NMR signal for a compound appeared as 180 Hz downward from TMS peak if operating frequency is 60 MHz. Calculate the chemical shift in ppm.
- d) What is base peak? How does it differ from molecular ion peak? Give examples.
- e) Define the terms: Shielding and deshielding.
- f) Explain the significance of nitrogen rule in mass spectra.
- g) What is proton noise decoupled spectra?
- h) What is meant by off resonance decoupling?
- i) What is Stevenson rule?
- j) State and explain principle of IR Spectroscopy.

Answer the following questions:

2. a) Summaries the Woodward-fisher rules for calculation of absorption maxima of α , β -unsaturated compounds. Predict the λ_{max} of the following examples.

P.T.O.

Paper Code: CHEHCT 31

- b) Briefly explain Overtones and Fermi resonance.
- c) Write note i) Bending and stretching vibrations.
 - ii) Applications of IR spectroscopy to alkanes, alkenes and alkynes.

OR

- c) Discuss the various types of electronic transitions encountered in electronic spectra. (5+5+6=16)
- 3. a) What are first order spectra? Give example. Explain any two techniques which can be used for reducing the complex spectra into first order spectra.
 - b) Write short notes on: i) Spin-spin coupling
 - ii) Use of lanthanide as shift reagents.
 - c) How can you distinguish the m-dichloro-benzoic acid and p-dichloro-benzoic acid by ¹HNMR?

OR

c) Write notes on: i) Karplus curves and Karplus equations.

ii) CIDNP.

(5+5+6=16)

- 4. a) Write a note on COSY spectra.
 - b) Compare and contrast ¹HNMR with ¹³CNMR spectroscopy.
 - c) Account on correlation NMR spectroscopy.

OR

c) Account on ¹⁹F spectroscopy.

(5+5+6=16)

- 5. a) With a neat sketch, explain the working of mass spectrophotometer.
 - b) Differentiates EI and SI ionization methods.
 - c) Write notes on: i) McLafferty rearrangement ii) Isotopic peaks

OR

c) An organic compound (Mol. Formula : C₈H₇Br) yields a primary alcohol on hydroboration and gives the following spectral data.

UV : λ_{max} 282 nm (ϵ_{max} = 450)

IR(vmax, cm⁻¹): 3033(w), 1602(m), 1582(w), 870(s), 770(s) and 710(m).

¹HNMR (δ ppm): 5.14 (1H, dd), 5.70 (1H, dd), 6.70 (1H, dd) and 7.26-738

(4H, s). Deduce the structure of the compound.

(5+5+6=16)

Paper Code: CHEHCT 32

M.Sc. III Semester (CBCS) Degree Examination, June/July 2023 Subject: CHEMISTRY

Paper: Physical Chemistry - III

Time: 3 Hours Max. Marks: 80

1. Answer any eight of the following:

 $(8 \times 2 = 16)$

- a) Differentiate between phase space and ensembles.
- b) Define partition function. Give its equation.
- c) Mention the limitations of Valance Band Theory (VBT).
- d) What is harmonic oscillator? Give the condition for harmonicity.
- e) What are semiconductors? How they are usefull?
- f) Define the term magnetoresistance.
- g) Mention the applications of zeolites.
- h) What are soft and hard magnetic materials? Explain briefly.
- i) Define partial molar quantities.
- j) What are colloids? Mention its characteristics.

Answer the following questions.

 $(4 \times 16 = 64)$

- 2. a) Discuss the Maxwell-Boltzmann distribution law for ideal gases.
 - b) Derive Bose-Einstein statistical equation.
 - c) Derive the translation partition function for monoatomic gaseous molecule.

OR

c) Compare between Fermi-Dirac and Bose-Einsteins statistics. (5+5+6=16)

P.T.O.

Paper Code : CHEHCT 32

- 3. a) Discuss the wave equation for H-atom and find the solutions for R and ϕ equations.
 - b) With neat diagram, explain the Molecular Orbital Theory (MOT).
 - c) Write a note on VB theory for H₂ molecule.

OF

c) Compare and contrast between MOT and VBT.

(5+5+6=16)

- 4. a) Write a note on principles and classification of solid state reactions.
 - b) Explain the principle and applications of thermo gravimetric analysis.
 - c) Write a note on determination of Fermi energy levels for semiconductors.

OR

c) Write a note on different types of magnetic materials.

(5+5+6=16)

- 5. a) Derive Gibbs-Duhems equation for chemical potential.
 - b) Discuss the electrokinetic phenomenon of colloids.
 - c) Explain the determination of Surface Tension.

OR

c) Write a note on Onsager reciprocity equation.

(5+5+6=16)

Paper Code: CHESCT 32

M.Sc. III Semester Degree Examination, June/July 2023 Subject: CHEMISTRY (CBCS Scheme) Paper: Inorganic Chemistry – III

Time: 3 Hours Max. Marks: 80

Answer any eight of the following questions.

 $(8 \times 2 = 16)$

- 1. a) How energy is dissipated during non-radiative process?
 - b) What is the role of Ceruloplasmin in the biological process?
 - c) Give the functions of Ferritin.
 - d) How magnesium help in photosynthesis?
 - e) What type of disease are caused by Copper and Iron overload?
 - f) What are Electron transfer proteins? Mention their significance.
 - g) How is the functioning of haemoglobin inhibited by the ligands and metal ions?
 - h) What is photosensitisation? Give example.
 - i) State the laws of photochemistry.
 - j) Give any two biochemical effects of As and Cd.
- 2. a) What are essential and trace elements? Describe the role of essential elements.
 - b) Give the structural features and biological functions of transferrin.
 - c) Write briefly on the drug action of cisplatin in cancer therapy.

OR

c) Describe the structure and functions of haemoglobin and myoglobin.

(5+5+6)

P.T.O.

Paper Code: CHESCT 32

- a) What are photoxidation and photoreduction reactions? Explain with suitable examples.
 - b) Discuss the photolysis of water using colloidal suspension.
 - c) Give the Potential energy diagram of excited species and compare with organic molecules.

OR

- c) Describe the mechanism of photo isomerisation and photo recimization reactions.
- 4. a) Illustrate on the parent-daughter decay-growth relationships.
 - b) Write a note on the theory of α , β -decay.
 - c) Mention the advantages and disadvantages of nuclear reactors.

OR

- c) Describe the method of Nuclear waste management and disposal procedures.
- a) Illustrate on the physical and chemical properties of ceramics. Give its types and uses.
 - Discuss the industrial pollution from cement industries and mention the methods of disposal of industrial effluent.
 - c) Describe the biochemical effects of As, Cd and Pb on enzymes. Give its mechanism.

OR

 c) What are pesticides and carcinogens? Discuss the adverse effects on the environment. (5+5+6)

